Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging†

Patrizio Lancellotti1,2*, Philippe Pibarot3,4, John Chambers5, Thor Edvardsen6, Victoria Delgado7, Raluca Dulgheru1, Mauro Pepi8, Bernard Cosyns9, Mark R. Dweck10, Madalina Garbi11, Julien Magne12,13, Koen Nieman14,15, Raphael Rosenhek16, Anne Bernard17,18, Jorge Lowenstein19, Marcelo Luiz Campos Vieira20,21, Arnaldo Rabiscoffsky22, Rodrigo Hernández Vyhmeister23, Xiao Zhou24, Yun Zhang25, Jose-Luis Zamorano26, and Gilbert Habib27,28

1Department of Cardiology, GIGA-Cardiovascular Sciences, University of Liège Hospital, Liège, Belgium; 2Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy; 3Quebec Heart and Lung Institute/Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada; 4Department of Cardiology, Laval University and Canada Research Chair in Valvular Heart Disease, Québec, Canada; 5Guy’s and St Thomas’ Hospitals, London, UK; 6Department of Cardiology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway; 7Department of Cardiology, Heart Lung Center Leiden University Medical Center, Leiden, The Netherlands; 8Centro Cardiologico Monzino, IRCCS, Milan, Italy; 9Cardiology, Centrum voor Hart en Vaatziekten, UZ Brussel, Bruxelles, Belgium; 10BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 11King’s Health Partners, King’s College Hospital NHS Foundation Trust, London, UK; 12CHU Limoges, Hôpital Dupuytren, Service Cardiologie, Limoges F-87042, France; 13INSERM 1094, Faculté de médecine de Limoges, 2, rue Marcland, 87000 Limoges, France; 14Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands; 15Department of Cardiology, Medical University of Vienna, Vienna, Austria; 16Cardiology department, CHRU de Tours, F-37000 Tours, France; 17Francois Rabelais University, Faculty of Medicine, F-37000 Tours, France; 18Servicio Cardiadiagnostico Investigaciones Médicas de Buenos Aires, Argentina; 19Heart Institute (InCor), São Paulo University Medical School, São Paulo, Brazil; 20Hospital Israelita Albert Einstein, São Paulo, Brazil; 21Hospital Pro Cardiaco Echocardiography Department Coordinator, Rio de Janeiro, Brazil; 22Hospital Fuerza Aérea de Chile, Cardiología Clínica Las Condes, Valparaíso University, Valparaíso, Chile; 23Cardiology, Chinese PLA General Hospital in Beijing, China; 24Shandong University Qilu Hospital in Jinan, Shandong, China; 25University Alcala de Henares, Hospital Ramon y Cajal, Madrid, Spain; 26Aix-Marseille Université, 13005 - Marseille, France; and 27Cardiology Department, APHM, La Timone Hospital, 13005 - Marseille, France

Received 6 January 2016; accepted after revision 7 January 2016

Prosthetic heart valve (PHV) dysfunction is rare but potentially life-threatening. Although often challenging, establishing the exact cause of PHV dysfunction is essential to determine the appropriate treatment strategy. In clinical practice, a comprehensive approach that integrates several parameters of valve morphology and function assessed with 2D/3D transthoracic and transoesophageal echocardiography is a key to appropriately detect and quantitate PHV dysfunction. Cinefluoroscopy, multidetector computed tomography, cardiac magnetic resonance imaging, and to a lesser extent, nuclear imaging are complementary tools for the diagnosis and management of PHV complications. The present document provides recommendations for the use of multimodality imaging in the assessment of PHVs.

Keywords echocardiography • cardiac magnetic resonance • cinefluoroscopy • computed tomography • nuclear imaging • prosthetic heart valve
Introduction

Valvular heart disease affects >100 million people worldwide and represents a growing problem because of the increasing burden of degenerative valve disease in the ageing population and of the still high incidence of rheumatic heart disease in developing countries. About 4 million prosthetic heart valve (PHV) replacements have been performed over the past 50 years, and this remains the only definitive treatment for most patients with severe valvular heart disease. The total number of replacements is projected to be 850,000 per year by 2050. PHV dysfunction is rare but potentially life-threatening. Although often challenging, establishing the exact cause of PHV dysfunction is essential to determine the appropriate treatment strategy. In clinical practice, a comprehensive approach that integrates several parameters of valve morphology and function assessed with 2D/3D transthoracic (TTE) and transoesophageal (TOE) echocardiography is a key to appropriately detect and quantitate PHV dysfunction. Cinefluoroscopy, multidetector computed tomography (CT), cardiac magnetic resonance imaging (CMR), and to a lesser extent, nuclear imaging are complementary tools for the diagnosis and management of PHV complications. The present document provides recommendations for the use of multimodality imaging in the assessment of PHVs.

Types of PHVs

A number of valve designs have been withdrawn or are currently implanted only rarely. However, these may still require imaging either as routine or on the suspicion of malfunction. Replacement valves are broadly grouped as biological or mechanical (Table 1).
The most frequently implanted biological valve is a stented bioprosthesis. These are composed of fabric-covered polymer or wire stents with a sewing ring outside and the valve inside. The valve may be a whole porcine valve (Table 2) (e.g., Carpentier-Edwards standard or Hancock standard). However, there is a muscle bar at the base of the porcine right coronary cusp, which can make it relatively obstructive. This cusp may therefore be excised and replaced by a single cusp from another pig (e.g., Hancock Modified Orifice), or more frequently, each cusp may be taken from three different pigs to produce a tricomposite valve (e.g., Medtronic Mosaic, St Jude Epic or Carbomedics Synergy). Stented pericardial bioprostheses have cusps made from pericardium (Table 2) or a sheet of pericardium cut using a template and sewn inside the stent posts or occasionally to the outside of the stent posts (e.g., Mitroflow, Trifecta). Usually the pericardium is bovine, but occasionally porcine and, experimentally, from kangoaroos. The bioprostheses also differ in the method of preservation of the valve cusps, the use of anticalcification regimes, and the composition and design of the stents and sewing ring.

Stentless bioprosthetic valves usually consist of a preparation of porcine aorta. The aorta may be relatively long (e.g., Medtronic Freestyle) or may be sculpted to fit under the coronary arteries (e.g., St Jude Medical Toronto). Some are tricomposite (e.g., Cryolife-O’Brien, Biocor) or made from bovine pericardium (e.g., Sorin Freedom) (Table 2). Homograft valves consist of human aortic or occasionally pulmonary valves, which are usually cryopreserved. They have good durability if harvested early after death and do not need anticoagulation. For this reason, they may be used as an alternative to a mechanical valve in the young. They may also be used for choice in the presence of endocarditis since they allow wide clearance of infection with replacement of the aortic root and valve and the possibility of using the attached flap of donor mitral leaflet to repair perforations in the base of the recipient’s anterior mitral leaflet. The stentless valves were introduced to increase the orifice area available for flow. It was also hoped that stresses on the cusps might be lessened leading to better durability and that some stent-related complications such as valve thrombosis might be less frequent.

The Ross Procedure consists of substituting the patient’s diseased aortic valve by his own pulmonary valve. Usually a homograft is then implanted in the pulmonary position. It is an infrequently performed operation requiring extensive training. It is justified because a living valve is placed in the systemic side allowing good durability. It is therefore an alternative in younger patients who do not wish to take regular anticoagulation. The autograft may grow which makes it particularly appropriate for children to reduce the need for repeat operations during growth. It is likely to resist infection better than valves, which include non-biological material and may also be used for preference in patients with infective endocarditis.

Sutureless valves (Table 2) were developed in the hope of reducing bypass times in patients at high risk from conventional surgery and to facilitate a minimally invasive approach. Transcatheter valves are a relatively new technology for patients at high risk for conventional valve replacement or in whom thoracotomy is not feasible or appropriate for technical reasons: e.g, porcelain aorta or when there is a left internal mammary graft crossing the midline. These are the subjects of separate guidelines. The most frequently implanted mechanical valves are now the bileaflet mechanical valves (Table 3). The various designs differ in the composition and purity of the pyrolytic carbon, in the shape and opening angle of the leaflets, the design of the pivots, the size and shape of the housing, and the design of the sewing ring. For example, the St Jude Medical valve has a deep housing with pivots contained on flanges, which may sometimes obscure the leaflets on echocardiography, while the Carbomedics standard valve has a shorter housing allowing the leaflet tips to be imaged more clearly. Single tilting disk valves and occasionally the Starr-Edwards caged-ball valve are also used.
These valve types differ, mainly for the aortic site, by implantation position relative to the annulus. Valves are intra-annular, partially supra-annular or entirely supra-annular. The partially supra-annular valves have a supra-annular sewing ring, but part of the housing within the annulus (e.g., On-X, St Jude HP). Wholly supra-annular valves have all parts of their mechanism above the annulus in the aortic site (e.g., Carbomedics ‘Top Hat’, Medtronic Mosaic) and occasionally in the mitral position (e.g., Carbomedics Optiform). The supra-annular position is designed to lift as much of the replacement valve above the annulus to maximize the orifice area available for flow. The maximum label size implantable may then be limited by the diameter of the aortic root or the position of the ostium of the right coronary artery.

Comparison of the different valve types is difficult because of major variations in sizing convention. This means that for a given patient tissue annulus, there may be major differences in the label size. In a study comparing valve label size against a modelled tissue annulus, there may be major differences in the label size. In a label size implantable may then be limited by the diameter of the aortic graft.

Echocardiographic assessment

2D and Doppler echocardiography are essential for initial and longitudinal assessment of patients with PHV. Although such evaluation follows the same principles as for native heart valves, the echocardiographic examination of PHV is more challenging. At the time of echocardiography, it is essential to know and document (i) the reason for the echo study; (ii) the patient’s symptoms; (iii) the type and size of the PHV; (iv) the date of surgery; (v) the blood pressure and heart rate; and (vi) the patient’s height, weight, and body surface area (Table 4). A comprehensive echocardiographic study is indicated in case of new murmur or any symptoms possibly related to PHV. When obtained early after hospital discharge, it can serve to define baseline PHV characteristics (‘fingerprint’).

2D echocardiographic examination

2D TTE is recommended as first-line imaging in PHV. A 2D TOE is more likely to be needed for the evaluation of PHV structure and associated complications. It is advocated in all cases of PHV dysfunction.

The complete echocardiographic imaging of the PHV includes the use of multiple views (conventional parasternal and apical TTE views or mid-oesophageal 2-3-4-chamber, commissural, and transgastric TOE views and off-axis views) with attention to determine the type of prosthesis, confirm the adequate valve leaflet/occluder morphology and mobility, check the integrity and stability of the sewing ring (any rocking motion), identify the presence of calcification or abnormal structures on any of the various components of the PHV, assess the size of cardiac chambers, the LV wall thickness and mass, the indices of LV systolic and diastolic function, and the systolic pulmonary arterial pressure (SPAP). Additional findings such as the aortic root and ascending aorta should be evaluated in case of aortic PHV (Table 5).

Magnification of real-time 2D images is often necessary for optimal visualization. M-mode enables better evaluation of valve movements (assessment of the brisk opening and closing and the degree

Table 3 Designs and models of mechanical replacement heart valve

<table>
<thead>
<tr>
<th>Design Type</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bileaflet mechanical replacement valves</td>
<td>St Jude Medical: standard, HP, Masters, and Regent</td>
</tr>
<tr>
<td>Tilting disk replacement valves</td>
<td>Bjork-Shiley monocusp</td>
</tr>
<tr>
<td>Optiflow, Orbis, and supra-annular (Top Hat) Carbomedics includes a woven aortic graft</td>
<td>Medtronic Hall</td>
</tr>
<tr>
<td>Edwards Tekna</td>
<td>Omnicarbon</td>
</tr>
<tr>
<td>Sorin Bicarbon</td>
<td>Ultrasor</td>
</tr>
<tr>
<td>Edwards Mira</td>
<td>Caged ball</td>
</tr>
<tr>
<td>ATS</td>
<td>Starr-Edwards</td>
</tr>
<tr>
<td>On-X</td>
<td>Smeloff-Cutter</td>
</tr>
<tr>
<td>Medtronic Advantage</td>
<td>Jyros</td>
</tr>
</tbody>
</table>

*Indicates withdrawn from market.

Table 4 Essential parameters in the comprehensive evaluation of prosthetic valve function

<table>
<thead>
<tr>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical information</td>
</tr>
<tr>
<td>Date of valve replacement</td>
</tr>
<tr>
<td>Type and size of the prosthetic valve</td>
</tr>
<tr>
<td>Height, weight, body surface area, and body mass index</td>
</tr>
<tr>
<td>Symptoms and related clinical findings</td>
</tr>
<tr>
<td>Blood pressure and heart rate</td>
</tr>
<tr>
<td>Imaging of the valves</td>
</tr>
<tr>
<td>Motion of cusps, leaflets, or occluder</td>
</tr>
<tr>
<td>Presence of calcification or abnormal structures on the various components of the prosthesis</td>
</tr>
<tr>
<td>Valve sewing ring integrity and motion</td>
</tr>
<tr>
<td>Doppler assessment of the valve</td>
</tr>
<tr>
<td>Spectral Doppler envelope</td>
</tr>
<tr>
<td>Peak velocity and gradient</td>
</tr>
<tr>
<td>Mean pressure gradient</td>
</tr>
<tr>
<td>Doppler signal velocity time integral (VTI)</td>
</tr>
<tr>
<td>Doppler velocity index (DVI)</td>
</tr>
<tr>
<td>Pressure half time in mitral and tricuspid valve</td>
</tr>
<tr>
<td>Effective orifice area (EOA)</td>
</tr>
<tr>
<td>Presence, location, and severity of regurgitation</td>
</tr>
<tr>
<td>Other imaging data</td>
</tr>
<tr>
<td>LV and RV size, function, and hypertrophy</td>
</tr>
<tr>
<td>LA and RA size</td>
</tr>
<tr>
<td>Co-existent valvular disease</td>
</tr>
<tr>
<td>Estimation of pulmonary artery pressure</td>
</tr>
<tr>
<td>Previous post-operative studies, when available</td>
</tr>
<tr>
<td>Comparison of above parameters in suspected prosthetic valvular dysfunction</td>
</tr>
</tbody>
</table>

EOA, effective orifice area; LA, left atrial; LV, left ventricle; RA, right atrial. Adapted from Zoghbi et al. ¹⁴
of excursion of the occluder) and corresponding time intervals and recognition of quick movements. Prosthetic disc motion is better evaluated in the mitral position since opening and closing angles can be identified in 77 and 100% of patients by TTE and TOE, respectively. On the contrary, in the aortic position, the opening angles (not closing angles) of single disc prostheses are identified in several consecutive beats is recommended.

Doppler echocardiography

The principles of flow assessment through PHVs are similar to those used in evaluating native valve, including interrogation from multiple windows and proper alignment of the Doppler beam with flow direction. Doppler recordings should be performed at a sweep speed of 100 mm/s. Measurements should be taken over one to three cycles in sinus rhythm. In atrial fibrillation, Doppler measurements should be performed during periods of physiologic heart rate (65–85 bpm), whenever possible; an average of five cycles is recommended. For calculations of valve effective orifice area (EOA) and Doppler velocity index (DVI), which require measurements from

Table 5 Imaging modalities: advantages and limitations

<table>
<thead>
<tr>
<th>Technical considerations</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| **2D TTE** | • Multiple views
• Careful probe angulation (alignment) for accurate leaflet motion display | • First-line imaging
• Ease of use
• Assessment of LV function and size and pulmonary pressure | • Limited by acoustic window and body habitus
• Acoustic shadowing by prosthetic material
• Angle dependent on accuracy of Doppler data |
| **2D TOE** | • Multiple views
• Careful probe angulation (alignment) for accurate leaflet motion display | • Higher resolution than TTE
• Proximity of the oesophagus with the heart
• Better visualization of the atrial side of mitral PHV and posterior part of aortic PHV
• Better visualization of peri-annular complications | • Poor visualization of anterior cardiac structure
• Poor temporal resolution
• Tissue dropout
• Lack of tissue characterization
• Artefacts due to an oblique (rather than horizontal) orientation of PHVs in mitral position |
| **3D TOE** | • Multiple cropping planes
• Narrow angle mode/Oblique views
• Full-volume dataset
• Zoom mode | • Ease of use
• Excellent spatial imaging
• Enable enface viewing (surgical view)
• Add on to 2D echo imaging | • No haemodynamic assessment
• No clues about the aetiology of limited disc motion |
| **Cinefluoroscopy** | • Postero-anterior (0°) and lateral (90°) projections
• ‘in profile’ projection (beam parallel to both the valve ring plane and the tilting axis of discs)
• ‘en face’ projection (beam parallel to the valve outflow tract) | • Ease of use
• Evaluation of PHV functioning
• Detection of calcium on the leaflets | • No clues
• Tissues dropout |
| **Cardiac CT** | • Wider exposure windows and multiphasic reconstructions for assessment of valve mobility
• Double oblique planes (short- and long-axis views) | • 3D data set
• Not limited by body habitus
• Good for aortic pathology
• High sensitivity for detection of calcification
• Allows visualization/differentiation of thrombus and pannus
• Excellent spatial imaging | • Radiation exposure
• Potentially nephrotoxic contrast
• Contrast allergies
• Artefacts from metallic objects |
| **CMR** | • T1-weighted spin echo and gradient echo sequences (steady-state free-precession and fast gradient echo)
• Phase-contrast sequences | • Good for aortic pathology (even without contrast)
• No ionizing radiation
• Myocardial characterization | • Artefacts from metallic objects
• Limited data in prosthetic valves
• Limited spatial and temporal resolution |
| **Nuclear imaging** | • Different tracers to image inflammation, calcification, or metabolism | • Extent of local infectious/metabolic activity
• Identify extracardiac infection/metabolic activity | • Radiation exposure
• Limited data in prosthetic valves, except in infective endocarditis |

different cardiac cycles, matching the respective cycles lengths to 10% is recommended. Doppler recordings should be obtained in quiet respiration or in mid-expiratory apnoea. TTE is the method of choice for Doppler signal recordings. However, when technically difficult, TOE is indicated.

Colour Doppler echocardiography

Colour Doppler assessment should be performed in multiple windows with appropriate colour Doppler settings (Nyquist limit around 50–60 cm/s). Colour Doppler evaluation enables discriminating physiologic from pathologic flows and between intra- and/or paraprosthetic regurgitation. The origin and direction of the jets should be evaluated. Localization of paravalvular regurgitation may be difficult and the use of multiple transthoracic transducer positions, including off-axis views, is recommended. In this regard, TOE is often necessary, particularly in mitral and tricuspid valves for which it is superior to TTE. TOE remains essential for assessing paravalvular regurgitation. Regurgitant jets may be occulted by acoustic shadowing.

3D echocardiography

Real-time 3D echocardiography, particularly during TOE, is suitable for the evaluation of PHVs and provides incremental advantage over 2D imaging. The 3D ‘en-face’ surgical view of the valve is extremely helpful for determining PHV function and defining the presence, origin, direction, and extension of regurgitant jets. Leaks are defined by 3D echocardiography as echo dropout areas outside the sewing ring confirmed by colour Doppler. 3D echocardiography allows advantageous visualization of PHV components such as the leaflets, rings, and struts (leaflets or disc material support), irrespective of the position. The presence and localization of thrombus formation, pannus, and prosthetic valve dehiscence can be evaluated by 3D echocardiography. This is especially useful for the assessment of mechanical mitral and aortic valves where 2D images are often of poor quality due to acoustic shadowing. With 3D imaging, the ventricular side of mitral prosthetic valves, which is consistently prevented with 2D imaging, can be often visualized.

After locating the best plane for imaging the PHV by standard 2D images, narrow-angled acquisition mode, 3D zoom mode, full-volume acquisition (single or multi-beat with ECG gating) with and without colour Doppler can be performed. Once the 3D data sets are acquired, they can be cropped to optimally visualize cardiac structures. By convention, the mitral valve image, as viewed from the left atrial perspective, is rotated to position the aortic valve at 12 and the left atrial appendage at 9 o’clock. A 5 o’clock is assigned to the commissure between the left and right coronary sinuses, and 8 o’clock to the commissure between the non-coronary and left coronary sinuses. Aortic paravalvular leaks are more commonly located between the right and non-coronary cusps.

There are a few limitations to 3D imaging such as poor visualization of anterior cardiac structures, poor temporal resolution, suboptimal images due to poor ECG triggering in patients with arrhythmias, and tissue dropout. Traditionally, 3D zoom mode provides images of high spatial resolution at the expense of temporal resolution with frame rates typically <10 Hz. This may hamper the ability to visualize fast moving structures such as vegetations and the dynamic behaviour of mitral rings. Anterior cardiac structures such as the aortic and tricuspid leaflets due to their increased distance from the TOE probe cannot be visualized as well as posterior structures such as the posterior mitral valve leaflet.

Stress echocardiography

Stress echocardiography is a valuable tool for the evaluation of PHVs haemodynamic function, especially when there is discordance between the patient’s symptomatic status and the PHVs haemodynamics. In patients with no, mild, or equivocal symptoms, the preferred modality is exercise stress echocardiography. Semi-supine bicycle exercise test is technically easier than upright bicycle or post-treadmill, especially when multiple stress parameters are assessed at the peak level of exercise. A low dose (up to 20 µg/kg/ min) dobutamine stress echocardiography can be used in patients with moderate or severe symptoms or when an exercise test is impossible. Details about stress echocardiography protocols are provided elsewhere.

Key points

- 2D TTE is recommended as first-line imaging in PHV. TTE is also the method of choice for Doppler signal recordings. Both TTE and TOE are needed for complete evaluation in a patient with suspected PHV dysfunction. 3D echocardiography, especially with TOE, can provide additional information and is increasingly used. For both TTE and TOE, it is essential to obtain images in multiple views and multiple planes to ensure complete visualization of the valvular and paravalvular region. TTE/TOE has higher sensitivity in mitral than aortic position for examining disc valve motion. For the evaluation of PHV regurgitation, TOE is superior in mitral/tricuspid position while TTE is better in aortic position, TOE, especially when completed by 3D evaluation, remains superior for assessing paravalvular regurgitation.

Additional imaging modalities

Cinefluoroscopy

Fluoroscopy is an easy and readily available non-invasive technique for evaluating mechanical PHVs. It is mainly indicated in case of abnormal high gradients. The method allows correct identification of the type of implanted prosthesis and evaluation of its functioning. Through appropriate projections, valve leaflet mobility, valvular ring motion, or even rupture and/or migration of parts of the valve can be evaluated. Abnormal tilting or rocking of the base ring is indicative of extensive valve dehiscence. This exam does not, however, allow haemodynamic assessment or provide clues about the aetiopathology of reduced disc mobility.

Generally, cinefluoroscopic study is carried out with the patient in the supine position. PHVs are viewed in three main projections: (i) the postero-anterior (0°) and lateral (90°) projections to identify the ‘in situ’ orientation of the valve; (ii) the ‘in profile’ projection (with the radiographic beam parallel to both the valve ring plane and the tilting axis of discs), allowing calculation of opening and closing angles and; (iii) the ‘en face’ projection (with the radiographic beam...
parallel to the valve outflow tract) which is utilized only for mitral prostheses. For all views, due to variability in surgical prosthesis orientation, careful patient positioning and the use of cranio-caudal angulation are frequently required. Of note, cinefluoroscopy provides a better evaluation of the motion of discs in the aortic position than echocardiography.41

A short (~10 beats) cinefluoroscopic film in each projection is acquired, from which frames are selected to evaluate and measure the disc motion radius. The opening and closing angles are calculated as the distance between the two leaflets in the fully open and closed positions (Figure 1A, Panel A and B). For single disc prostheses, the opening angle is defined as the distance between the housing and the disc at its fully open position, and for bileaflet disc prostheses as the distance between the leaflets in the fully open position (Figure 1B). The method is usually feasible despite poor radio-opacity of some mechanical valves.

Figure 1 (A) Evaluation of closing (Panels a and c) and opening angles (angle between discs in the fully open and closed positions) (Panels b and d) of mechanical bileaflet valves as performed using cinefluoroscopy (Panels a and b) and cardiac computed tomography (Leaflet angles relative to the plane of the orifice ring) (Panels c and d). (B) Evaluation of opening (Panel e) and closing angles (Panel f) of mechanical tilting disk valve as performed using cinefluoroscopy.
Of note, detection of calcium on the leaflets of a tissue valve is diagnostic of degeneration but does not allow assessment of its hemodynamic impact.

Cardiac computed tomography

Cardiac CT is generally not performed for routine evaluation, but rather when valvular dysfunction or other complications are suspected. It can provide incremental information on valvular mobility, integrity, and (para) valvular pathology (e.g. endocarditis, aneurysmal dilatation, or other involvement of the surrounding tissues). CT can be used as an alternative to fluoroscopy for mechanical PHV to measure the opening/closing angles (Figure 1A, Panel C and D) and could be considered for imaging the cusps of biological valves (leaflet thickening, visualization of calcification, or thrombus) if TOE is inconclusive. Malcoaptation may be visible, allowing in some cases planimetric quantification of the regurgitant valve orifice. Para-valvular regurgitation may be identified, depending on the size of the defect and the radiopacity of the valve ring. Ring dehiscence may be appreciated by a rocking displacement of the valve ring on dynamic CT reconstructions. CT can distinguish thrombus from pannus. CT can be used to quantify the severity of stenosis in a bioprosthesis by planimetry of the anatomic orifice area (geometric orifice area, GOA). The morphological consequences of obstructive or regurgitant valve dysfunction can be observed in the form of ventricular or atrial dilatation or stasis of contrast medium suggesting congestion. In preparation for redo surgery, cardiac CT can also be of use to assess the coronary status or the patency of bypass grafts, particularly in younger patients with non-degenerative valvular heart disease. To avoid unintended trauma during sternotomy, CT can assess the space between the sternum and the right ventricle. Impingement or injury of the left circumflex coronary artery, though rare, may occur because of its proximity to the annulus, and can be assessed by CT angiography.

Using ECG-synchronized acquisition or reconstruction of data nearly motion-free images (depending on the temporal resolution) with a sub-millimetre isotropic spatial resolution can be acquired and reconstructed in any imaginary cross-sectional plane. If data are acquired throughout the cardiac cycle, then images can be reconstructed representing consecutive cardiac phases, which subsequently allows for assessment of structural displacement. Contrary to real-time echocardiography, dynamic CT reconstructions (repeatedly) display only a single heart cycle. Dynamic assessment of radiopaque mechanical valves does not require injection of contrast medium, similar to cinefluoroscopy. Similarly to coronary CT angiography, pharmacological heart rate modulation may be used. PHVs are visualized best in the fully open or closed position. Nominal opening angles depend on the type of PHV and the need for ionizing radiation. Depending on the type of scanner, the selected scan protocol, and the requirement for single- or multiphasic images, the radiation dose varies between ~1 and 20 mSv. Cardiac CT is further limited by its inability to assess flow and haemodynamics. Pledged material adjacent to the valve ring may also be misinterpreted as regurgitation, although the density is often slightly higher than the contrast-enhanced blood.

Cardiovascular magnetic resonance

CMR has been demonstrated to be safe in patients with PHV, in whom it is commonly used to assess concomitant aortic pathology. CMR is an excellent technique for volumetric assessment of cardiac chambers and flows and may be of value for assessing the function of the PHV itself, especially as a complementary method when TTE is non-diagnostic and TOE undesirable. CMR can thus be used for valve analysis using steady-state free precession (SSFP) sequences, which precisely discriminate blood from tissue. Turbulent flow through a regurgitant orifice is easily visible with SSFP (visualization of signal voids due to spin dephasing in moving protons). PHV anatomy can be imaged by acquisition of standard short-axis, two-, three-, and four-chamber long-axis views in combination with oblique long-axis cines orthogonal to the line of coaptation. Leaflet motion restriction may be identified. GOA may also be measured in bioprosthetic valves. No study has reported on the evaluation of pannus or thrombus using CMR. In some circumstances, assessing the anatomic regurgitant orifice area by planimetry of the regurgitant orifice in a slice parallel to the valvular plane and perpendicular to the regurgitant jet is feasible using SSFP CMR. Furthermore, blood flow and velocity might also be obtained by phase-contrast velocity mapping. CMR is thus a useful tool for assessing regurgitation, especially in the follow-up of replacement pulmonary valves. Even though its value has been increasingly proved for the quantitation of regurgitation in native valves and to a lesser degree after transcatheter aortic valve implantation, there are very limited data in patients with surgically implanted PHVs. CMR may also potentially demonstrate abnormal asymmetrical flow patterns in PHV obstruction, although leaflet angle measurements may not always be possible. Late gadolinium enhancement CMR (images obtained 10–20 min after injection of contrast) is widely used to assess cardiac fibrosis in various cardiomyopathies. In patients with PHVs, CMR might serve to evaluate the impact of valve replacement on the myocardial structure. To date, for the heart valves that have been tested, CMR-related heating has not been shown to reach substantial levels. Moreover, although CMR provides information on PHV-related flow patterns and velocities, more studies are required to provide diagnostic reference values to allow discrimination of normal from pathological conditions.

Nuclear cardiology

The use of nuclear imaging modalities in the assessment of PHVs is limited. However, recent interest has surrounded the use of 18F-fluorodeoxyglucose positron emission tomography (PET) in the detection of PHV endocarditis, which is not the scope of the present document. Other recent studies suggest that 18F-sodium fluoride PET/CT is able to identify active tissue calcification and predict disease progression in patients with native aortic
Further studies are needed to determine whether this technique would be able to identify active mineralization of bioprosthetic valve tissues and thereby predict the risk of structural valve degeneration.

Key points

Non-echo imaging modalities are generally not performed for routine evaluation of PHV, but rather when valvular dysfunction or other complications are suspected. They can provide incremental information on valvular integrity and valvular/paravalvular pathology. Cinefluoroscopy has a complementary role in evaluating disc mobility of mechanical PHVs and valve ring structure. Cardiac CT is also an important adjuvant imaging technique that permits visualization of calcification and degenerative changes of biological prosthesis, pannus formation, the presence of thrombus, and assessment of movement of occluders in mechanical valves. The use of CMR is not yet routine practice but is increasing. Nuclear imaging currently has very limited application in the evaluation of PHV other than in the setting of suspected infective endocarditis.

PHV function and characteristics

Morphologic and functional characteristics

Leaflet motion and occluder mobility

Mechanical PHVs have specific patterns of echoes that can help identify the type of prosthesis. In normal PHVs, the motion is brisk and consistent with each beat. Nominal opening angles depend on the type of PHV and sometimes also on its location. For a replacement valve in the mitral position, the poppet is seated in the sewing ring in systole. On M-mode, the cage, the sewing ring, and the ball provide four distinct echoes.

Table 6 Mechanical valves: opacification and opening angles

<table>
<thead>
<tr>
<th>Prosthesis materials</th>
<th>Open (Degrees)</th>
<th>Closed (Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caged-ball valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starr-Edwards</td>
<td>Three (aortic)</td>
<td>Silicone rubber</td>
</tr>
<tr>
<td></td>
<td>or four-strut (mitral)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>cobalt-chrome alloy cage</td>
<td>N/A</td>
</tr>
<tr>
<td>Tilting disc valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Björk-Shiley</td>
<td>Cobalt-chrome alloy</td>
<td>Silicon alloyed pyrolytic carbon on graphite substrate</td>
</tr>
<tr>
<td>Medtronic-Hall</td>
<td>Titanium alloy</td>
<td>Silicone alloyed pyrolytic carbon on tungsten-loaded graphite substrate</td>
</tr>
<tr>
<td>Omnicience</td>
<td>Titanium alloy</td>
<td>Silicone alloyed pyrolytic carbon on tungsten-loaded graphite substrate</td>
</tr>
<tr>
<td></td>
<td>Pyrolytic carbon over graphite substrate</td>
<td>70 (mitral)</td>
</tr>
<tr>
<td>Omnicarbon</td>
<td>Cobalt-chromium alloy coated with a thin layer of pyrolytic carbon</td>
<td>80</td>
</tr>
<tr>
<td>Sorin Allcarbon</td>
<td>Cobalt-chromium alloy coated with a thin layer of pyrolytic carbon</td>
<td>12</td>
</tr>
<tr>
<td>Bileaflet valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATS Medical</td>
<td>Pyrolytic carbon over graphite substrate with metallic band</td>
<td>Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate</td>
</tr>
<tr>
<td>Carbomedics</td>
<td>Solid pyrolytic carbon with titanium stiffening ring metallic band</td>
<td>Silicone alloyed pyrolytic carbon on tungsten-loaded graphite substrate</td>
</tr>
<tr>
<td>Edwards Tekna (previously Duromedics)</td>
<td>Solid pyrolytic carbon with titanium stiffening ring</td>
<td>Silicone alloyed pyrolytic carbon on tungsten-loaded graphite substrate</td>
</tr>
<tr>
<td>St Jude Medical</td>
<td>Pyrolytic carbon over graphite substrate with metallic band</td>
<td>Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate</td>
</tr>
<tr>
<td>On-X</td>
<td>Pyrolytic carbon with graphite substrate with titanium alloy bands</td>
<td>Pure pyrolytic carbon on tungsten-loaded graphite substrate</td>
</tr>
<tr>
<td>Bicarbon</td>
<td>Cobalt-chromium alloy coated with a thin layer of pyrolytic carbon</td>
<td>Silicone alloyed pyrolytic carbon on tungsten-loaded graphite substrate</td>
</tr>
</tbody>
</table>

Leaflet angles relative to the plane of the orifice ring as provided by the manufacturers. Note that the angles are measured using the same approach by cardiac computed tomography. Conversely, on cinefluoroscopy, opening and closing angle in bileaflet PHVs are defined as the angle between discs in the fully open and closed positions, respectively. This means that the opening angle is the angle between the two discs (generally <30° and in the majority of valves <20°). The closing angle is usually >120°–130°.
A single echo movement up and down on the ventricular side can be seen with ‘tilting disc valve (monoleaflet).’ The opening angle of the disc relative to the valve annulus ranges from 60° to 80° resulting in two orifices of different size. On M-mode, the opening of the valve forms an intense echo with multiple reverberations.

Two separate disks can be visualized in ‘bileaflet PHV’; they open and close almost in synchrony. The opening angle of the leaflets relative to the annulus plane ranges from 75° to 90°, with the open valve consisting of three orifices: a smaller, slit-like central orifice between the leaflets, and two larger semi-circular orifices laterally (Figure 2).

‘Biological valves’ have a trileaflet structure, which normally appears thin (1–2 mm) with unrestricted motion and no evidence of prolapse.1,7,83 Their 2D and M-mode appearances reveal a box-like opening in systole in the aortic position and in diastole in mitral or tricuspid position, similar to that of native valves. The sewing ring and the struts (the three struts are shown in the short-axis view in Figure 3) are however more echogenic, which can limit the visualization of the leaflets (Figure 3A and B). Stentless aortic bioprostheses or aortic homografts have a similar appearance to that of native aortic valves, except for an increased thickness in the LV outflow tract and the ascending aorta. Early after implantation, a stentless valve inserted as an inclusion can be surrounded by haematoma and oedema. Sutures are defined as linear, thick, bright, multiple, evenly spaced, usually immobile echoes seen at the periphery of the sewing ring of a PHV; they may be mobile when loose or unusually long. The 3D appearance of biological valve, in any anatomical position, is always similar with the appearance of a native aortic valve, with three cusps, with a larger diameter when used in mitral or tricuspid position and with a smaller diameter when used in aortic or pulmonary position.

Acoustic shadowing

Prosthetic materials, particularly in mechanical models, cause numerous ultrasound artefacts, including acoustic shadowing, reverberations, refraction, and mirror artefacts (Figure 4, Panel A–E).14,84 This often affects imaging quality and is even more pronounced in case of double PHVs. Multiple and sometimes off-axis views must be used to overcome these problems and interrogate areas around the prostheses. At lower gain settings, the valves are generally better visualized.

Generally, the left/right atrial (LA/RA) side of a prosthetic mitral/ tricuspid valve is obscured by acoustic shadowing from the TTE approach, resulting in a low sensitivity for detection of prosthetic mitral or tricuspid regurgitation (MR, TR), thrombus, pannus, or vegetation (Figure 5, Panel A and B). TOE provides superior images of the LA/RA side of the mitral/tricuspid prosthesis (Figure 5, Panel C and D). In the aortic position, the posterior aspect of the valve appears shadowed on TTE (Figure 4, Panel A) while the anterior aspect of the valve is shadowed on TOE (Figure 4, Panel C to E).85,86

For stented valves, the ultrasound beam should be carefully aligned parallel to the flow to avoid shadowing effects of the stents and sewing ring.87 Artefacts created by mechanical valves are different for cardiac CT compared with echocardiography or CMR. Partial volume combined with interpolation effects created during image reconstruction causes metal (-coated) structures to appear larger (hyperdense artefact, blooming, and bright streak), while beam-hardening effects create dark shadows (hypodense artefact). These artefacts are most severe during phases of rapid displacement.31,36,40 Valves with cobalt-chrome rings (Björk–Shiley valve) suffer most severe beam-hardening artefacts. Prospective ECG
triggering can reduce PHV-induced artefacts compared with retrospective ECG gating.

PHVs also produce artefacts with CMR signal loss relative to distortion of the magnetic field by the metal mechanical valves hold. Artefacts are less with biological valve. Artefacts are more pronounced with gradient-echo cines and less on spin-echo images. Microbubbles

Microbubbles are characterized by a discontinuous stream of rounded, strongly echogenic, fast-moving transient echoes. Microbubbles occur at the LV inflow zone of the valve when flow velocity and pressure suddenly drop at the time of prosthetic valve closing, but may also be seen during valve opening. The cavitation potential is likely correlated with valve design, occluding material, and the velocity of the leaflet closure. Microbubbles are common in the mitral position (Figure 6, Panel A). They are probably due to carbon dioxide degassing and linked to hypercoagulability of blood near the valve though of doubtful significance. They might be at the origin of high-intensity transient signals in the cerebral circulation, which can be detected using transcranial Doppler examination of the middle cerebral artery. They can be observed in both normal and dysfunctional mechanical PHVs. Microbubbles are not found in bioprosthetic valves.

Spontaneous echo contrast

Spontaneous echo contrast (SEC) is defined as smoke-like echoes. The prevalence of SEC is 7 to 53%. SEC is caused by increased red cell aggregation that occurs in slow flow (e.g., low cardiac output, severe LA dilatation, atrial fibrillation, and pathologic obstruction of a mitral prosthesis).

Strands

Strands are thin, mildly echogenic, filamentous structures that are several millimetre long (often <1 mm thick and >2 mm up to 30 mm length) and move independently from the PHV (Figure 6, Panel B). They

Figure 3 Bioprostheses: normal appearance. 2D and 3D transthoracic (TTE) and transoesophageal (TOE) echocardiography appearance of bioprosthetic replacement valves. (A) 2D TTE appearance of a normal bioprosthesis in mitral position; the frame on which the leaflets are attached is a strong echo-reflector leading to acoustic shadowing (white arrows). However, this phenomenon is of lesser magnitude than in mechanical valves. The ventricular and atrial sides of one of the leaflets are nicely delineated (red arrows). (B) 2D TOE at 120° appearance of a normal bioprosthesis in aortic position as seen in diastole; the frame of the valve is nicely seen leading to discrete acoustic shadowing; the aortic and ventricular sides of two of the leaflets are clearly seen in the long-axis view. (C) 2D TOE at 45° appearance of a normal bioprosthesis in aortic position, as seen in diastole, from the aortic side. The three pillars of the metallic frame on which the leaflets are mounted are seen at 1, 5, and 10 o’clock (arrows), as well as the coaptation lines of the leaflets. (D) Same image as in C but from a 3D perspective. (E) The atrial aspect of a normal bioprosthetic valve in mitral position in diastole from a 3D perspective. The ring of the prosthesis as well as the atrial surface of the three leaflets in systole are seen in detail.
are often visible intermittently during the cardiac cycle but recur at the same site. They are usually located at the LV inflow side of the PHV (i.e. the atrial side of a mitral prosthesis or the ventricular side of an aortic prosthesis). They can be observed on both mechanical and biological PHVs. Strands are found in 6 to 45% of patients. Pros-thetic valve-associated strands are likely to have multiple causes; they may have a fibrinous or a collagenous composition. Strands have been found to be more common in patients undergoing TOE for evaluation of the source of embolism than in patients examined for other rea-
sons. Although this association may imply an embolic potential, their meanings and therapeutic implications remain unclear.

Key points

Mechanical PHVs have specific patterns of echoes that can help identify the type of prosthesis. The echocardiographic assessment of PHVs can be limited by the shadowing effect particularly for the mitral prosthesis from the TTE approach and partially for the aortic prosthesis from the TOE views.

Haemodynamic characteristics

All normal functioning mechanical PHVs cause some degree of ob-
struction to blood flow, closure backflow (necessary to close the valve), and leakage backflow (after valve closure).87,94

Flow patterns (anterograde flows) and clicks

Blood flow through normally functioning PHVs differs from flow through native valves. The pattern of anterograde flow is unique to each valve and depends on the shape and number of orifices through which forward flows occurs. Double-envelope spectral Doppler profiles may often be seen in mechanical PHVs. Spectral Doppler recordings of PHV flow also include brief, intense, high-velocity signals referred to as clicks due to the opening and closing of the occluder mechanism (Figure 4F and 5E). The colour map should entirely fill the orifice in all views (Figure 2B).

In the setting of a ‘single disc’, the large major orifice (semi-
circular jet in cross-section) may create a dense and typically lower velocity jet arising from the major orifice, and a faint (could be also two or three jets depending on the number of struts), higher-velocity jet from the minor orifice.

Similarly, ‘bileaflet mechanical valves’ generate a dense, lower velocity jet arising from the two lateral orifices, with a faint higher veloc-
ity jet arising from the central orifice. (Figure 2, Panel F). Three separate jets thus characterize the pattern of the anterograde trans-
valvular flow (Figure 2, Panel B).

With ‘caged-ball PHVs’, blood flows goes around the entire cir-
cumference of the ball and gives two curved side jets and a large wake in the central part.
Figure 5 Mechanical valve in mitral position: normal appearance. Acoustic shadowing and reverberations seen with 2D transthoracic and transoesophageal echocardiography when imaging a mechanical valve in mitral position depending on the acoustic view used (A and B, acoustic shadowing and reverberations on the atrial side (LA) vs. C and D on the ventricular (LV) side. (F) Pulsed wave Doppler (PWD) signal showing the opening and closing clicks (white arrows) of a normally functioning mitral valve. M-mode showing normal opening and closure of the discs.

Figure 6 Mechanical valve in mitral position: cavitation and strands. (A) Cavitation (yellow arrow) inside the left ventricular cavity related to the presence of a mechanical valve in mitral position, as seen from the apical transthoracic approach. (B) Fibrin strands (orange arrow) seen as fine filamentous masses attached to the atrial side of a mechanical valve in mitral position as seen from the transoesophageal approach.
With ‘bioprosthesis’, a single central anterograde flow pattern is observed.

Pressure gradients and EOA

The haemodynamic performance of most PHVs is inferior to that of the normal native valve. Hence, PHVs often cause some degree of obstruction to blood flow, which may vary depending on the model and size of prosthesis as well as the patient’s body size. Quantitative parameters of PHV function include transprosthetic flow velocity (highest velocity signal in PHVs) and pressure gradients, effective orifice area (EOA), and DVI (Tables 1 and 2).

Transprosthetic flow velocity and gradients

Doppler echocardiography takes advantage of the relationship defined by the Bernoulli equation between velocity and pressure, to assess gradients. Using the Bernoulli equation, the difference in pressure across a restrictive orifice is defined as:

$$\Delta P = P_1 - P_2 = 4(V_2^2 - V_1^2)$$

where P_1 and V_1 are the pressure and velocity, respectively, proximal to the restrictive orifice; and P_2 and V_2 are the pressure and velocity, respectively, distal to the orifice. The peak difference between pressures is the peak instantaneous gradient, and the average difference over the duration of flow is the mean gradient. Since $V_2 > V_1$ and the vicious friction are ignored, the energy balance through the orifice simplifies to:

$$\Delta P = 4(V_2^2)$$

which is the simplified Bernoulli equation used to translate the velocity from echocardiography to a pressure drop. However, especially in normally functioning bioprostheses, V_2 values may be low (often <2 m/s), so the use of the simplified Bernoulli equation (default setting on the echo machine) can cause significant overestimation of pressure gradients. This overestimation may be negligible in obstructive PHVs (often seen with mechanical valves) with high V_2 values (from +3 to +5%), but it may be clinically significant in normally functioning bioprostheses (from +13 to +19%). In these situations, estimation of the pressure gradient is more accurately determined by integrating the velocity proximal to the prosthesis into the Bernoulli equation ($\Delta P = 4(V_2^2 - V_1^2)$). The peak velocity across the prosthesis is to some extent related to valve size with the small prostheses having higher velocities, but since velocities are determined by cardiac output and systemic vascular resistance, there may be overlap between different valve sizes of a particular type of prosthesis. In patients with aortic prostheses and high cardiac output or narrow LV outflow tract (LVOT), the velocity proximal to the prosthesis may be elevated and therefore not negligible (proximal velocity >1.5 m/s).

Because of the inherent risks related to crossing a prosthetic valve with a catheter, invasive assessment of prosthetic valve haemodynamics is rarely used. There is generally a good correlation between peak and mean pressure gradients determined invasively and non-invasively. However, if significant pressure recovery is present, such as in patients with a small aorta, the pressure gradients measured by left heart catheterization are lower than those measured by Doppler echocardiography. The peak-to-peak pressure gradient measured by catheter is substantially lower than the peak instantaneous gradient measured by catheter or Doppler. Given that the aortic and LV pressure peaks do not occur at the same time, the peak-to-peak pressure gradient has no physiological meaning. Furthermore, it is highly influenced by aortic compliance. Hence, this parameter should not be used for the assessment of native or prosthetic aortic valves. Underestimation of the gradients can be observed in the presence of (i) failure to align the Doppler beam parallel with the highest velocity jet (ideal angle <20°), (ii) any low flow state (gradients are known to be sensitive to flow), (iii) elevated systemic blood pressure. Overestimation of the gradients can be observed in the presence of (i) any high flow state, (ii) mistaking MR flow signal for transaortic flow signal (MR starts earlier and lasts longer than aortic flow), (iii) angle correction of Doppler interrogation relative to the direction of blood flow (this is not recommended), (iv) the pressure recovery phenomenon (Doppler gradient substantially higher than the invasively determined pressure gradient, particularly in patients with a small aorta).

Effective orifice area

The EOA is not the same parameter as the GOA (the internal valve area theoretically available for the bloodstream to pass through). The EOA is always smaller and describes the functional area. The EOA indeed corresponds to the smallest area of the jet passing through the prosthesis as it exits the valve (vena contracta). Both the shape of the inlet and the size of the orifice affect the ratio between GOA and EOA (coefficient of flow contraction). Clinically, the coefficient of contraction varies from 0.90 to 0.71, which may result in up to a 29% difference between the EOA and GOA. The theoretical GOA can be calculated from the internal orifice diameter of the prosthesis stent provided by the valve manufacturers. In bioprosthetic valves, the GOA can be measured by planimetry from echocardiographic, CT or CMR images. The theoretical GOA grossly overestimates the planimetric GOA, because it assumes that the whole internal area of the prosthesis stent is available for blood flow, which is not the case. The valve leaflets indeed occupy a substantial proportion of the stent orifice. Furthermore, the planimetric GOA overestimates the EOA due to the flow contraction phenomenon described above. It is important to underline that, from a pathophysiologic standpoint, the transvalvular pressure gradients are essentially determined by the EOA. Hence, the gradients correlate better with EOA than with GOA.

The prosthetic valve EOA is less flow dependent than the transprosthetic velocity or gradient, and is thus often a better index of intrinsic valve haemodynamic performance (Tables 1 and 2). However, this parameter is more prone to technical pitfalls and measurement errors. For both aortic and mitral prosthetic valves, the EOA should be calculated by the continuity equation method using the stroke volume measured in the LVOT or rarely the right ventricular outflow tract (RVOT) (Figures 7 and 8). EOA is a reflection of the minimal cross-sectional area (CSA) of the transprosthetic flow jet (the vena contracta), and it is calculated as:

$$EOA = \frac{CSA \times VT_{LVOT}}{VT_{RV}}$$

$$E OA = 0.785 \times (D_{LVOT})^2 \times VT_{LVOT}/VT_{RV}$$

$$EOA = \frac{\text{Stroke volume}}{VT_{RV}}$$
where the VTILVOT is the velocity time integral of blood flow in the LVOT, measured with pulsed wave (PW) Doppler in the LVOT just proximal from the aortic valve (apical views) or rarely the pulmonic valve (short-axis view); and the VTIPrV is the velocity time integral through the prosthetic valve determined by continuous wave (CW) Doppler. The pulmonic site to calculate the stroke volume is rarely used but useful if the LVOT cannot be evaluated.19

The continuity method requires that the velocity utilized for the stroke volume calculation is the spatial mean velocity, which is obtained by moving the sample volume approximately 0.5 cm away from the prosthesis sewing ring towards the LV apex.19 The principle is that the LVOT diameter and velocity derive from almost the same anatomic location. The sample volume position is optimal if the signal contains a nice spectral envelope and the closing click of the prosthesis (in case of aortic prosthesis). The VTILVOT is obtained by tracing the contour of the Doppler flow signal. The peak velocity may be used instead of the VTILVOT in the continuity equation.19 The VTIPrV is recorded from the same transducer position (apical five- or three-chamber, right parasternal, or suprasternal window with TTE or transgastric position at 90° to 120° or a deep transgastric ‘upside-down view’ at 0° to 20° with TOE). The measurement of the LVOT diameter (parasternal long-axis zoomed view with TTE or 120° view with TOE) is often challenging in the presence of an aortic prosthesis because of the reverberations and shadowing caused by the prosthesis components. Particular attention should be paid not to mistake the inner border of the prosthesis stent/ring for the inner edge of the LVOT. Any error in the measurement of LVOT diameter will be squared in the calculation of the EOA. For an LVOT diameter of 2.0 cm, a 10% error in measurement (1.8 cm) results in a 19% error in calculated EOA. It is important to emphasize that the substitution of the LVOT diameter by the labelled prosthesis size in the continuity equation is not a valid method to determine the EOA of aortic prostheses.109 For aortic prostheses, this method is also valid in the presence of concomitant prosthetic regurgitation. However, for mitral prostheses, the continuity equation method cannot be applied when there is >mild concomitant mitral (MR) or aortic regurgitation (AR). In some cases, volumetric method can be used when the conventional 2D-Doppler method is not feasible/reliable. In ‘normally functioning’ prostheses, the EOA should fall into in the normal reference for that prosthetic valve type and size (Tables 7 and 8).

The pressure half time (PHT) method is not valid for estimating the EOA of mitral prostheses.103 The time for the initial transprosthetic gradient to decline to half of its initial value is not only related to the prosthetic valve area but also to the pressure gradient at the start of diastole and to LV and left atrial compliance.19 Nonetheless, the PHT may be useful if it is significantly delayed or shows significant lengthening from one follow-up visit to the other despite similar heart rates.14

Doppler velocity index

The DVI can be helpful to screen for prosthetic valve stenosis, particularly when reliable measure of the LVOT diameter cannot be obtained to calculate the EOA by the continuity equation method.110 This index is less dependent on valve size because of the linear relationship of the implanted valve size to the size of the LVOT. For aortic prostheses, the DVI is calculated as the ratio of the proximal peak flow velocity (or VTI) in the LVOT to the transprosthetic peak flow velocity (or VTI). For a normally functioning aortic prosthesis, the DVI is typically >0.30–0.35.14

\[DVI = \frac{V_{peak, LVOT}}{V_{peak, PV}} \quad \text{or} \quad \frac{VTI_{LVOT}}{VTI_{PrV}} \]

For prosthetic mitral valves, DVI is calculated as:

\[DVI = \frac{VTI_{PrV}}{VTI_{LVOT}} \]

It is normally <2.2 for mechanical mitral valves.

Parameters of flow ejection dynamics

Parameters of flow ejection dynamics measured on the CW Doppler signal of the transprosthetic flow velocity (Figure 7, Panel C) are angle-independent parameters that can also help to distinguish between normal PHV function [with or without patient-prosthesis mismatch (PPM)] vs. acquired PHV stenosis.111 In a normal aortic native or prosthetic valve, the contour of the CW flow velocity...
Figure 8 Mitral prosthesis EOA calculation using the continuity equation. The stroke volume across the aortic valve is calculated as described in Figure 7, Panels (A) and (B). The EOA of the mitral prosthesis is calculated by dividing the left ventricle stroke volume by the VTIPrV of the trans-prosthetic flow obtained with continuous wave Doppler (C and D).

Table 7 Normal reference values of effective orifice areas for the prosthetic aortic valves

<table>
<thead>
<tr>
<th>Prosthetic valve size (mm)</th>
<th>19</th>
<th>21</th>
<th>23</th>
<th>25</th>
<th>27</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stented bioprosthetic valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mosaic</td>
<td>1.1 ± 0.2</td>
<td>1.2 ± 0.3</td>
<td>1.4 ± 0.3</td>
<td>1.7 ± 0.4</td>
<td>1.8 ± 0.4</td>
<td>2.0 ± 0.4</td>
</tr>
<tr>
<td>Hancock II</td>
<td>–</td>
<td>1.2 ± 0.2</td>
<td>1.3 ± 0.2</td>
<td>1.5 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>1.6 ± 0.2</td>
</tr>
<tr>
<td>Carpentier-Edwards Perimount</td>
<td>1.1 ± 0.3</td>
<td>1.3 ± 0.4</td>
<td>1.5 ± 0.4</td>
<td>1.8 ± 0.4</td>
<td>2.1 ± 0.4</td>
<td>2.2 ± 0.4</td>
</tr>
<tr>
<td>Carpentier-Edwards Magna</td>
<td>1.3 ± 0.3</td>
<td>1.5 ± 0.3</td>
<td>1.8 ± 0.4</td>
<td>2.1 ± 0.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Biocor (Epic)</td>
<td>1.0 ± 0.3</td>
<td>1.3 ± 0.5</td>
<td>1.4 ± 0.5</td>
<td>1.9 ± 0.7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mitroflow</td>
<td>1.1 ± 0.2</td>
<td>1.2 ± 0.3</td>
<td>1.4 ± 0.3</td>
<td>1.6 ± 0.3</td>
<td>1.8 ± 0.3</td>
<td>–</td>
</tr>
<tr>
<td>Trifecta</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Stentless bioprosthetic valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medtronic Freestyle</td>
<td>1.2 ± 0.2</td>
<td>1.4 ± 0.2</td>
<td>1.5 ± 0.3</td>
<td>2.0 ± 0.4</td>
<td>2.3 ± 0.5</td>
<td>–</td>
</tr>
<tr>
<td>St Jude Medical Toronto SPV</td>
<td>–</td>
<td>1.3 ± 0.3</td>
<td>1.5 ± 0.5</td>
<td>1.7 ± 0.8</td>
<td>2.1 ± 0.7</td>
<td>2.7 ± 1.0</td>
</tr>
<tr>
<td>Prima Edwards</td>
<td>–</td>
<td>1.3 ± 0.3</td>
<td>1.6 ± 0.3</td>
<td>1.9 ± 0.4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mechanical valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medtronic-Hall</td>
<td>1.2 ± 0.2</td>
<td>1.3 ± 0.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>St Jude Medical Standard</td>
<td>1.0 ± 0.2</td>
<td>1.4 ± 0.2</td>
<td>1.5 ± 0.5</td>
<td>2.1 ± 0.4</td>
<td>2.7 ± 0.6</td>
<td>3.2 ± 0.3</td>
</tr>
<tr>
<td>St Jude Medical Regent</td>
<td>1.6 ± 0.4</td>
<td>2.0 ± 0.7</td>
<td>2.2 ± 0.9</td>
<td>2.5 ± 0.9</td>
<td>3.6 ± 1.3</td>
<td>4.4 ± 0.6</td>
</tr>
<tr>
<td>MCRI On-X</td>
<td>1.5 ± 0.2</td>
<td>1.7 ± 0.4</td>
<td>2.0 ± 0.6</td>
<td>2.4 ± 0.8</td>
<td>3.2 ± 0.6</td>
<td>3.2 ± 0.6</td>
</tr>
<tr>
<td>Carbomedics Standard and Top Hat</td>
<td>1.0 ± 0.4</td>
<td>1.5 ± 0.3</td>
<td>1.7 ± 0.3</td>
<td>2.0 ± 0.4</td>
<td>2.5 ± 0.4</td>
<td>2.6 ± 0.4</td>
</tr>
<tr>
<td>ATS Medical*</td>
<td>1.1 ± 0.3</td>
<td>1.6 ± 0.4</td>
<td>1.8 ± 0.5</td>
<td>1.9 ± 0.3</td>
<td>2.3 ± 0.8</td>
<td>–</td>
</tr>
</tbody>
</table>

Effective orifice area is expressed as mean values available in the literature. Further studies are needed to validate these reference values.

*For the ATS medical valve, the label valve sizes are 18, 20, 22, 24, and 26 mm. High velocities are common in size 19 or 21 prostheses. Adapted with permission from Ref. 7.
through the prosthesis generally has a triangular shape, with early peaking of the velocity and a short (<100 ms) acceleration time (AT) (i.e. the time from the onset of flow to maximal velocity, Figure 7, Panel C). However, the acceleration time is highly dependent on heart rate. To overcome this limitation, it is recommended to index the AT to the LV ejection time.

Pressure recovery and localized high gradient
Several studies have reported that Doppler may overestimate the gradient across native, mechanical, or bioprosthetic aortic valves compared with catheter measurements.100,112–115 As blood flow velocity decelerates between the aortic valve and the ascending aorta, part of the kinetic energy is reconverted back to static pressure energy. This phenomenon is called pressure recovery. Most of the kinetic energy is dissipated in heat as a result of turbulence. Hence the net gradient between the LV and the ascending aorta (i.e. the gradient measured by catheter) is less than the maximum pressure gradient measured by Doppler at the level of the vena contracta. The ratio between the valve EOA and the cross-sectional area of the downstream chamber, i.e. the ascending aorta in the case of native or prosthetic aortic valves, determines the extent of pressure recovery. Hence, pressure recovery generally becomes clinically relevant in patients with smaller aortas, i.e. with an aorta diameter of the sino-tubular junction ≤30 mm.100,112–115 In these patients, it is thus appropriate to account for pressure recovery by using the simple formula proposed by Garcia et al.112 to calculate the energy loss coefficient: \(ELC = (EOA \times AA/AA - EOA) \), where AA is the cross-sectional area of the aorta measured at \(\sim 1\ cm \) downstream of the sino-tubular junction. The energy loss coefficient should be indexed for body surface area (i.e. energy loss index) to account for the change in cardiac output related to body size. Pressure recovery generally does not occur in the case of mitral prostheses, because the size of the downstream chamber (i.e. the LV) is large relative to the EOA of the prosthesis.

The downstream pressure recovery phenomenon is distinct from another mechanism responsible for localized high gradients within the central orifice of bileaflet mechanical valves.100,113,116,117 This may yield to overestimation of gradient (average of 4 to 11% compared with catheterization) and underestimation of EOA regardless of the position (aortic or mitral) of the prosthesis. Because the central orifice is smaller than the lateral orifices, the blood flow velocity may be locally higher within the inflow aspect of the central orifice and continuous-wave Doppler may record this high velocity. The prevalence, magnitude, and predictors of this phenomenon are not fully understood, but it is probably related to PHV size (smaller size, higher velocity) and design (ratio of the size of the central orifice to that of lateral orifices) and flow conditions (higher flow, higher velocity).100,113,116,117 Given that localized high-velocity region is very small and located at the inflow of the central orifice, the recording of this velocity is highly inconsistent and may vary from one patient to the other and even from one visit to the other in a given patient, depending on the direction and angulation of the Doppler beam.

Physiologic regurgitation (retrograde flows)
Mechanical valves have a normal regurgitant volume that may include either a backflow related to the backward motion of the occluder(s) (i.e. the closing volume), a leakage backflow through the components of the prosthesis (leakage volume) or both.7,14,80–82,94–96 This ‘built-in’ regurgitation theoretically prevents blood stasis and thrombus formation by a washing effect. Minor regurgitation is thus normal in virtually all mechanical valves. As opposed to pathologic regurgitant jets, the normal leakage backflow jets are characterized by being narrow at their origin and symmetrical and low in momentum (i.e. usually have a homogeneous colour without significant aliasing). They are also characterized by the absence of supporting features like increased anterograde velocity, enlargement of cardiac chambers, or pulmonary hypertension. Of note, mild central leakage may be seen in normally functioning bioprosthetic valves.7,14

‘Caged-ball mechanical prostheses’ have a small amount of normal regurgitant flow (closing volume of 2–6 mL per beat).

‘Monoleaflet mechanical’ valves have small physiologic regurgitant volume (5–9 mL per beat) that includes the closing volume as well leakage backflow through small gaps around the perimeter of the valve. In the Medtronic-Hall valves, there is also often a small amount of regurgitation around the central strut.

‘Bileaflet mechanical valves’ typically have a small amount (5–10 mL per beat) of normal regurgitation. On Doppler colour flow imaging, two main regurgitant jets originating from the pivot points of the valve disks which may break into one or more ‘plumes’ and a smaller central jet are often seen (Figure 2, Panel G and I). Smaller jets around the closure rim of the leaflets may also be seen.

Table 8 Normal reference values of effective orifice areas for the prosthetic mitral valves

<table>
<thead>
<tr>
<th>Prosthetic valve size (mm)</th>
<th>25</th>
<th>27</th>
<th>29</th>
<th>31</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stent bioprosthetic valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medtronic Mosaic</td>
<td>1.5±0.4</td>
<td>1.7±0.5</td>
<td>1.9±0.5</td>
<td>1.9±0.5</td>
<td>–</td>
</tr>
<tr>
<td>Hancock II</td>
<td>1.5±0.4</td>
<td>1.8±0.5</td>
<td>1.9±0.5</td>
<td>2.6±0.5</td>
<td>2.6±0.7</td>
</tr>
<tr>
<td>Carpentier-Edwards Perimount</td>
<td>1.6±0.4</td>
<td>1.8±0.4</td>
<td>2.1±0.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mechanical valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St(Jude Medical Standard</td>
<td>1.5±0.3</td>
<td>1.7±0.4</td>
<td>1.8±0.4</td>
<td>2.0±0.5</td>
<td>2.0±0.5</td>
</tr>
<tr>
<td>MCRI On-Xa**</td>
<td>2.2±0.9</td>
<td>2.2±0.9</td>
<td>2.2±0.9</td>
<td>2.2±0.9</td>
<td>2.2±0.9</td>
</tr>
</tbody>
</table>

Effective orifice area is expressed as mean values available in the literature. Further studies are needed to validate these reference values.

Notes:

- The On-X valve has just 1 size for 27 to 29 and 31 to 33 mm prostheses. In addition, the strut and leaflets are identical for all sizes (25 to 33 mm); only the size of the sewing cuff is different. Adapted with permission from Ref. 7.
A small degree of central (at the point of apposition or close to the commissures) regurgitation (<1 mL) is also often observed in ‘bioprosthetic valves’ and more frequently in bovine pericardial valves. Stentless valves, including homografts and autografts, are more likely than stented valves to have minor regurgitant jets.

Key points

All normal functioning mechanical PHVs cause some degree of obstruction to blood flow, closure backflow (necessary to close the valve), and leakage backflow (after valve closure). Quantitative parameters of PHV function include transprosthetic flow velocity and pressure gradients, EOA and DVI. Although good correlation exists between Doppler and invasive measurements, overestimation of pressure gradients by Doppler is frequent in mechanical PHVs. Comparison of the haemodynamic function of different designs of valve cannot be made using label size. The label size cannot be used as surrogate for LVOT diameter in the calculation of the EOA using the continuity equation.

PHV dysfunction

Structural valve dysfunction

Structural valve deterioration results in stenosis or regurgitation through the valve.7,118,119

For ‘mechanical valves’, haemodynamic dysfunction can occur as a result of strut fracture, occluder fracture or escape, loss of leaflet mobility (not due to thrombus, pannus, or vegetation) or ball variance (due to lipid adsorption on the ball of old model Starr-Edwards valves), sewing cuff separation from housing.7,118

For ‘bioprosthetic valves’, haemodynamic dysfunction (stenosis or regurgitation) usually occurs with calcification or tearing of the cusps but occasionally fracture of the stent sewing cuff separation from stent, or valve deformation.

Non-structural and other causes of valve dysfunction

Non-structural dysfunction is any abnormality not intrinsic to the valve itself and includes dehiscence or entrapment of the occluder by pannus, tissue, or suture (Table 9).17,120

Thrombus formation is the most common cause of obstruction of mechanical prostheses (~0.3 to 8% per patient-year). Although less frequent and more insidious, it can also be observed in bioprosthesis. The incidence of pannus formation causing prosthesis obstruction is similar in biological and mechanical prostheses. Mitral and tricuspid prostheses are associated with, respective, 7.5 and 11.7 times higher hazard risk of thrombosis and the risk of pannus formation is three times larger in the mitral position. Large prosthesis size (>27 mm), tilting disk, and bileaflet prostheses

<table>
<thead>
<tr>
<th>Complication</th>
<th>Definition</th>
<th>Examples or notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural valve deterioration</td>
<td>Deterioration or dysfunction of the operated valve caused by changes intrinsic to the valve</td>
<td>(1) Mechanical valve—wear, fracture, poppet escape (2) Biological valve—calcification, leaflet tear, stent creep (3) Both—disruption of components of a prosthetic valve</td>
</tr>
<tr>
<td>Non-structural dysfunction</td>
<td>Any abnormality not intrinsic to the valve that results in stenosis or regurgitation of the valve or haemolysis</td>
<td>(1) Entrapment by pannus, tissue, or suture (2) Paravalvular leak (3) Inappropriate sizing or positioning (4) Residual leak or obstruction after valve implantation (5) Clinically important intravascular haemolysis (6) Dilatation of aorta or aortic annulus causing aortic regurgitation (for stentless valves)</td>
</tr>
<tr>
<td>Valve thrombosis</td>
<td>Any thrombosis not caused by infection that occludes part of the blood flow path, interferes with valve function, or is sufficiently large to warrant treatment</td>
<td></td>
</tr>
<tr>
<td>Embolism</td>
<td>An embolic event that occurs in the absence of infection after the immediate perioperative period</td>
<td>(1) Stroke (>72 h neurological deficit) or non-specific symptoms with brain imaging demonstrating an acute ischaemic event (2) TIA (fully reversible symptoms of short duration with no abnormality on brain imaging) (3) Non-cerebral embolic event (not perioperative myocardial infarct)</td>
</tr>
<tr>
<td>Bleeding event</td>
<td>Any episode of major internal or external bleeding that causes death, hospitalization, permanent injury, or blood transfusion</td>
<td>Exclude bleeding associated with major trauma or an operation. Include major unexpected bleeding associated with minor trauma.</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Proved infection of the replacement heart valve</td>
<td>Proof by: (1) Reoperation with evidence of abscess or other local complication (2) Autopsy evidence of abscess, pus, or vegetation (3) Duke criteria positive</td>
</tr>
</tbody>
</table>

Based on definitions in Akins et al.119
are associated with, respective, 67, 69, and 83% risk reduction of thrombosis.120

Differentiation between thrombosis and pannus overgrowth remains challenging. Recent onset of dyspnoea or of an embolic event and a history of subtherapeutic anticoagulation are suggestive of obstructive valve thrombosis. The thrombus tends to be mobile and globular with a soft echo density (similar to that of the myocardium) and may be attached to the valve occluder or sewing ring or both (Figure 9). Pannus is firmly fixed, has a bright echo density (small dense mass with the same echo intensity as the valve housing), and is attached to the valve apparatus (valve housing and pivot guards) (Figure 10).121 The situation is further complicated, because pannus may induce thrombus formation. On cardiac CT, thrombus has lower measured CT attenuation values than pannus, with a suggested threshold of 200 HU to distinguish either (Table 10).53,61

Pathologic PHV regurgitation

Pathologic regurgitation is either central or paravalvular.11,16,20,21 Most pathologic central regurgitations are seen with biologic valves as a sign of structural valve degeneration. A pathological jet is often first seen close to the commissure at a site of an early tear in the leaflet. This may then progress on serial studies. Regurgitation through a mechanical valve may be seen with mechanical interference with closure, for example, by pannus, thrombus, vegetation, or more rarely a chordae. Disappearance of physiological regurgitation and the presence of a new central regurgitation are typically observed in acute thrombosis of mechanical valves.

The incidence of paravalvular regurgitation is similar in mechanical and biological valves. Paravalvular regurgitation depends on numerous factors including surgical technique, the size and composition of the sewing ring and the position of the valve (annular vs. supra-annular), and the quality of the patient’s tissues. In the mitral position, it occurs mainly in the posterior and anterior regions. Most are apparent in the immediate postoperative study and occur because of technical problems at the time of surgery including the presence of friable tissue. Late dehiscence is often a sign of infective endocarditis. Less commonly, the integrity of the original suture line could be compromised by usual wear- or age-related deterioration of the surrounding tissue.

Localization of paravalvular regurgitation may be difficult and is only possible with confidence if a trail of flow can be visualized around the outside of the sewing ring. Although paraprosthetic regurgitation is abnormal, small jets are not uncommon especially during perioperative examination early after surgery. Immediately following implantation, the prevalence of paravalvular regurgitation ranges between 5 and 20%.122 However, the majority of these leaks

Figure 9 Mechanical valve in mitral position and thrombus obstruction. Increased transprosthetic mean pressure gradient (MPG) over a mechanical valve in mitral position (D), as assessed from the transoesophageal view and related to the presence of a thrombus (A and B, white arrows). Flow acceleration due to the obstruction at the level of the prosthesis is seen by colour flow imaging (orange arrow, B). Another example of a thrombotic mass on the atrial side of the prosthesis blocking its medial orifice (C, white arrow). A schematic representation is summarized in E.
are clinically and haemodynamically insignificant and, in the absence of endocarditis, have a benign course. There is no evidence that they increase the risk of endocarditis, but on occasion, they may cause haemolytic anaemia due to red cell destruction.123

Imaging evaluation of PHV dysfunction

Both qualitative and quantitative assessments are recommended. Excessive motion of the sewing ring may be a clue to valvular dehiscence.7,122 A rocking motion of >15° of sewing ring excursion is abnormal.14 However, usually rocking in the aortic position implies a large dehiscence, ~40% of the sewing ring. Unlike in the aortic position, rocking of the sewing ring may occur as a result of retention of the native posterior leaflet, but a true dehiscence is obvious from the gap opening between annulus and sewing ring and by the presence of an overlaying jet on colour mapping. Structural deterioration of a bioprosthetic valve should be suspected whenever increased valvular regurgitation or stenosis develops.

When PHV obstruction is suspected, imaging assessment should look for (i) thickening of the leaflets in biological prosthesis, or the presence of a mass limiting the movement of the occluders in mechanical prosthesis; (ii) decreased motion of the disc, ball, or leaflet; (iii) restriction of the colour flow at the PHV orifice; (iv) haemodynamic impairment and ventricular consequences (Doppler echocardiography) (Table 1).

Generally, the same principles and methods used for quantification of native valvular regurgitation, detailed in a previous document, can be used for PHVs, but are more challenging (Figures 11–15).20,21 In fact, there are very limited data on the application and validation of these parameters (e.g. vena contracta width, EROA, RVol) in the context of PHVs. Moreover, the frequent eccentricity of regurgitant jets, the presence of multiple jets, and the shadowing effects due to prosthetic materials make detection and quantification more difficult or limited. Indirect clues from various colour Doppler parameters can suggest the presence of significant regurgitation (i.e. turbulent jet at the roof of LA below the acoustic shadow). Transvalvular jets should be distinguished from paravalvular regurgitations (Figure 16). At present, integrating multiple qualitative, semi-quantitative, and quantitative findings is the recommended approach for assessing PHV regurgitation.14

Patient-prosthesis mismatch

PPM occurs when the EOA of a normally functioning prosthesis is too small in relation to the patient’s body size (and thus to cardiac
output requirements), resulting in abnormally high postoperative gradients (i.e. mean gradient >20 mmHg).103,124 Hence, PPM is not an intrinsic prosthesis dysfunction per se. The identification of PPM and its differentiation from dysfunction is achieved by calculating the projected indexed EOA, i.e. the normal reference value of EOA for the model and size of the prosthesis (Tables 7 and 8) divided by patient’s body surface area. Table 12 shows the cut-off values of indexed EOA generally used to identify and quantify the severity of PPM.

Table 10

Differential diagnosis: pannus vs. thrombosis

<table>
<thead>
<tr>
<th></th>
<th>Pannus</th>
<th>Thrombosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronology</td>
<td>Minimum 12 months, commonly >5 years from surgery date</td>
<td>Occurs at any time (if late usually associated with pannus)</td>
</tr>
<tr>
<td>Relation to anticoagulation (low INR)</td>
<td>Poor relationship</td>
<td>Strong relationship</td>
</tr>
<tr>
<td>Location</td>
<td>MV $>$ AV</td>
<td>TV $>$ MV = AV</td>
</tr>
<tr>
<td>Morphology</td>
<td>Small mass</td>
<td>Larger mass than pannus</td>
</tr>
<tr>
<td></td>
<td>Mostly involve suture line (Ring)</td>
<td>Independent motion common</td>
</tr>
<tr>
<td></td>
<td>Centripetal growth</td>
<td>Thin outer ring maybe visible</td>
</tr>
<tr>
<td></td>
<td>Confining to the disk plane</td>
<td>Project into LA for MV position</td>
</tr>
<tr>
<td></td>
<td>Growth beneath disc</td>
<td>Mobile elements</td>
</tr>
<tr>
<td>Echo density (video-intensity ratio)</td>
<td>More >0.7 (100% specific)</td>
<td>Less (<0.4)</td>
</tr>
<tr>
<td>Cardiac CT: attenuation value</td>
<td>>200 HU</td>
<td><200 HU</td>
</tr>
<tr>
<td>Impact on gradient</td>
<td>AV $>$ MV</td>
<td>MV $>$ AV</td>
</tr>
<tr>
<td>Impact on valve orifice</td>
<td>AV $>$ MV</td>
<td>MV $>$ AV</td>
</tr>
<tr>
<td>Impact on disc motion</td>
<td>Yes/no</td>
<td>Yes</td>
</tr>
</tbody>
</table>

AV, aortic valve; LA, left atrial; MV, mitral valve; TV, tricuspid valve.

Table 11

Minimum dataset for the echocardiographic assessment of PHVs

Aortic position
- Peak velocity
- Mean gradient
- Velocity time integral (VTI)
- Doppler velocity index (DVI)
- Effective orifice area (EOA) by the continuity equation
- Presence, location, and severity of regurgitation
- $+ LV$ size and function, LV hypertrophy (a hyperdynamic LV is a useful indirect sign of severe aortic regurgitation), $aorta$ (most likely to continue to dilate if dilated at the time of surgery)
- $+ Other$ valves: appearance, grade of stenosis, and regurgitation

Mitral position
- Peak velocity
- Mean pressure gradient
- Velocity time integral (VTI)
- Doppler velocity index (DVI)
- Effective orifice area (EOA) by the continuity equation
- Pressure half time
- Presence, location, and severity of regurgitation
- $+ LV$ size and function, LA size, estimated systolic pulmonary artery pressure (a hyperdynamic LV is a useful indirect sign of severe mitral regurgitation); (pulmonary hypertension may be a sign of mitral dysfunction)
- $+ Other$ valves: appearance, grade of stenosis, and regurgitation

Tricuspid position
- Peak velocity
- Mean pressure gradient
- Velocity time integral (VTI)
- Doppler velocity index (DVI)
- Pressure half time
- Presence, location, and severity of regurgitation
- $+ RV$ size and function, RA size, IVC size, hepatic venous flow, estimated systolic pulmonary artery pressure
- $+ Other$ valves: appearance, grade of stenosis, and regurgitation

IVC, inferior vena cava; LV, left ventricle; RA, right atrial; RV, right ventricle.

The prevalence of severe PPM ranges from 2 to 10% in both positions.125 PPM is associated with worse haemodynamics, slower and less complete regression of LV hypertrophy and pulmonary hypertension, worse functional class, exercise capacity, and quality of life, more cardiac events, and lower survival.126–128 PPM also predispose to faster degeneration of bioprosthetic valves following $aortic$ valve replacement.129,130
(iii) the valve leaflet morphology and mobility are normal; (iv) the PPM is present early after surgery and on all subsequent echocardiograms.

There are however some specific caveats in the assessment of PPM: (i) the use of the EOA indexed for body surface area may over-estimate the severity of PPM in obese patients (body mass index ≥ 30 kg/m2).131 It is thus recommended to use lower cut point values of indexed EOA to identify moderate and severe PPM in obese subjects (Table 12).132 Indexing the EOA by the fat free mass measured by a bio-impedance scaler may provide an interesting alternative avenue, but this needs to be validated by further studies; (ii) although PPM is the most frequent cause of high gradients following valve replacement, it is important to highlight that, in the presence of low flow state, PPM may be associated with a normal or low gradient. Indeed as for native valve stenosis, low-flow states are often associated with pseudo-normalization of transvalvular flow velocities and gradients leading to underestimation of PPM or prosthetic valve stenosis. Stress echocardiography may be useful in this context to differentiate a true PPM or stenosis vs. normal valve function; (iii) a large proportion of patients with aortic or mitral prosthetic valves in fact have coexistence of PPM and acquired stenosis or regurgitation. The criteria presented in Table 12 are

Figure 11 Aortic prosthetic regurgitation. An example of pathological intraprosthetic regurgitation jet from a transoesophageal 120° view. The width of jet expansion into the left ventricular outflow tract (red line) is compared with the width of the outflow tract (white line). Of note, a part of the regurgitant flow is not seen due to the prosthetic valve shadowing effect.

Figure 12 Severe paraprosthetic regurgitation of a mechanical prosthesis in aortic position as assessed by 3D and 2D transoesophageal echocardiography (TOE). From a modified 120° approach, the paraprosthetic regurgitant jet can be seen by colour flow imaging (A, B, and C). Note that a clear regurgitant jet convergence zone and a nicely defined vena contracta (B, yellow arrows) of the regurgitant jet can be observed. The radius of the proximal isovelocity surface area (PISA) (C, red line) can be measured, and with the PISA method, the effective regurgitant orifice area (EROA) and the regurgitant volume (R Vol) can be calculated (D). From the transthoracic approach, there is a holodiastolic flow reversal in the descending thoracic aorta (Desc. Ao) with an end-diastolic velocity (EDVel >20 cm/s, E). The PHT is shortened (F).
related to pure PPM with no concomitant dysfunction. In the presence of acquired stenosis, the EOA is significantly below these values and the leaflet morphology/mobility is generally abnormal. The projected indexed EOA is the only parameter that is valid to identify and quantitate PPM in the presence of concomitant stenosis. If there is doubt, CT or cinefluoroscopy can support echocardiography in the diagnosis of pure PPM by showing normal leaflet function, the absence of masses, and small GOA (Figures 17 and 18).130

Key points

PPM should be distinguished from PHV dysfunction. PPM is present early after surgery and on all subsequent echocardiograms. The echocardiographic diagnosis of pannus formation is often a diagnosis of exclusion but may be detected better by CT. At present, integrating multiple qualitative, semi-quantitative, and quantitative findings is the recommended approach for assessing PHV regurgitation.

Follow-up and monitoring

Patients who have recently undergone valve replacement should not be considered as cured and require careful and, when necessary, frequent follow-up.131 Ideally, a comprehensive baseline TTE should be obtained at the first postoperative visit usually after 4–6 weeks when the chest wound has healed, chest wall oedema has resolved, and LV systolic function has recovered. However, if the patient is being transferred to another hospital’s care and may not return, it may be better to perform the study before discharge. It is then not recommended to perform routine scans in asymptomatic patients with normally functioning mechanical valves or until 5 (ESC) to 10 (ACC/AHA) years after implantation for those with normally functioning biological valves.4,5 However, it is suggested that routine TTE should still be performed annually for (i) new designs of biological valve for which durability data are not established; (ii) patients with aortic dilatation at the time of surgery; (iii) patients after

Figure 13 Severe intraprosthesis regurgitation of a bioprosthesis in mitral position (A). Note the anterograde turbulent jet (B, white arrow) due to the high blood volume (normal anterograde flow + regurgitant volume) passing through the prosthesis. Consequently, the peak velocity of the early diastolic flow is increased ($E = 2.6 \text{ m/s}$) in relation to the increase in flow (E). With colour flow Doppler, and by shifting the baseline into the direction of the regurgitant jet, a clear regurgitant jet convergence zone and a nicely defined vena contracta (C, yellow arrows) of the regurgitant jet can be observed. The radius of the proximal isovelocity surface area (PISA) (D, white line) can be measured, and with the PISA method the effective regurgitant orifice area (EROA) and the regurgitant volume (R Vol) can be calculated (F). Moreover, the analysis of the pulmonary vein flow pattern shows reversal of the systolic S wave (I), indicative of severe regurgitation. Same regurgitation from 2D and 3D transoesophageal approach (G and H).
left-sided mitral valve replacement [to check for the development of tricuspid regurgitation (TR) and RV dysfunction]. Echocardiography also becomes indicated if symptoms develop or in case of signs suggesting valve dysfunction or alteration (i.e. thickening of a bioprosthesis, which can represent an early sign of structural valve dysfunction). When TTE/TOE is inconclusive, additional imaging approaches (cinefluoroscopy, cardiac CT, CMR) can be indicated.

Valve-specific approach

Aortic prosthetic valve

Baseline assessment and serial reports

Several clinical and Doppler echocardiographic findings should be reported when assessing aortic PHV function (Tables 4 and 10). They include (i) measurement of blood pressure; (ii) evaluation of valve morphology and function; (iii) estimation of prosthetic pressure gradients and flow velocities, DVI, EOA; (iv) assessment of regurgitation severity (physiologic/pathologic/central/paravalvular), if present; (v) evaluation of LV size and function; (vi) estimation of pulmonary pressure. The measured value of LVOT and the acoustic window that provides the highest aortic jet velocity are documented. Values should be compared with the normal Doppler data available for each prosthetic valve subtype and size, and the presence of PPM should be noted. The need, the type, and the reason for other imaging approaches required during follow-up should be mentioned. Any changes in aortic PHV morphology and function parameters are documented.

Imaging assessment

Effort should be made to image all portions of the aortic PHV. This involves imaging of the sewing ring, cusps, stents, the occluder(s), and surrounding areas. Echocardiography is the first-line imaging but cinefluoroscopy, cardiac CT, or occasionally CMR can be used when echocardiography is inconclusive (see above). On TTE, all standard views must be used. Colour Doppler imaging is used to confirm the presence of normal anterograde flow and to demonstrate the expected washing jets. Colour Doppler is used to rule out the presence of pathologic valvular or paravalvular jets. The entire circumference of the valve’s sewing ring must be assessed. The motion of the cusps or occluder is imaged using parasternal long- and short-axis and the apical three- and five-chamber views. The stents of biological valve are often well seen in the parasternal long-axis view. Careful orientation of the ultrasound beam parallel to the direction of the occluder opening can reduce acoustic shadowing across the plane of the valve and improve occluder visualization. This is
particularly useful for the apical views. Of note, the origin of prosthesis AR (central vs. paravalvular) is best imaged in the parasternal short-axis view. Paravalvular regurgitant jets located posteriorly are however often totally or partially masked in the parasternal long-axis or short-axis views because of the shadowing caused by the prosthetic valve stent. Apical views should thus be carefully examined to properly detect and quantitate these posterior jets. On TOE, the reference view is at mid-oesophageal level usually with a rotation to $\approx 45^\circ$ and 120° to obtain a short- and long-axis visualization of the valve, showing closure and opening of the aortic cusps or movement of the occluder, and the presence of AR. The long-axis view (TTE and TOE) permits visualization of the LVOT, the aortic annulus, the aortic cusps, the sinuses of Valsalva, the sino-tubular junction, and the first centimetres of the tubular aorta. Deep transgastric TOE views at 0° image are also used to evaluate the LVOT, the prosthesis, and the proximal part of the aorta. With TOE, anterior regurgitant jets may be under-detected or underestimated in some views due to the shadowing phenomenon. The jets located on the lateral or medial aspects of the aortic PHVs are often difficult to visualize in the standard TTE and TOE views, and it is necessary to obtain off-axis/intermediary views to reveal these jets. 3D echocardiography, especially during TOE, is ideal for imaging the entire aortic prosthesis, the whole sewing ring, and the extent of any paravalvular leak (Figure 16).

Valve morphology and function

Aortic PHV dysfunction, stenosis and/or regurgitation, is generally associated with abnormal valve morphology and/or mobility. Imaging may demonstrate the aetiology of dysfunction by showing evidence of leaflet degeneration (thickening (>3 mm), calcification, abnormal mobility) in bioprostheses, abnormal occluder/disc motion in mechanical PHVs, or excessive motion of the sewing ring. If the cusps are thickened or if the occluder has reduced opening, then the valve is likely to be obstructed. Conversely, if the cusps and occluder are thin and open normally, then the valve is likely to be normal provided that pannus can be excluded. The sutures or small fibrin strands may be visible. Early after implantation, an aortic haematoma and oedema can be observed in stentless valve.

Acquired aortic PHV obstruction

Doppler assessment

Doppler ultrasound assessment (CW and pulsed wave) of aortic PHVs is obtained from the apical positions and completed by the interrogation of the right parasternal, suprasternal, and sub-costal views (to measure the highest velocities). CW Doppler signal across the normal aortic PHV usually shows a peak velocity >2 m/s occurring in early systole with a short acceleration time, i.e. the time from the onset of flow to maximal velocity (AT <80 ms), and a triangular envelope. Increasing grades of obstruction are associated with increasing mean transaortic gradients and peak velocities that occur late in systole with longer AT relative to LV ejection duration and a more rounded Doppler signal (Figure 19).

Transaortic gradients and velocities are influenced by prosthesis size, stroke volume, and the presence of PPM or of any obstruction. For example, increased mean transaortic gradients can be observed in small prostheses and in patients with moderate or severe PPM, whereas in patients with severe stenotic aortic PHV, the transaortic
gradients may be only mildly elevated if concomitant severe LV dysfunction (low flow state) is present. To overcome these limitations, other Doppler-based parameters have been proposed: the AT and the ratio between the AT and the ejection time (ET). An AT > 100 ms and an AT/ET ratio > 0.37 suggest the presence of aortic PHV stenosis with a good accuracy.\(^{30,111}\) The advantage of these parameters is that they are independent of Doppler beam angulation in relation to flow direction. On the other hand, the limitation of these parameters is that they are influenced by LV systolic function and chronotropy. Significant aortic PHV stenosis is usually associated with increased transprosthetic peak flow velocity or mean gradient during stress echocardiography (≥3 m/s or ≥20 mmHg).\(^{35,135}\) A change from earlier studies is another specific parameter of PHV stenosis; an increase in mean gradient > 10 mmHg or a fall in EOA > 25% during follow-up suggests clinically significant obstruction.

The measurement of the EOA and the DVI (VTI\(_{LVOT}/VTI_{PrV}\)) provides a less flow-dependent evaluation of the prosthetic aortic valve obstruction.\(^{19}\) Calculation of the EOA (stroke volume/VTI\(_{PrV}\)) by the continuity equation requires accurate estimation of the stroke volume, which depends on precisely recording the LVOT diameter and velocity (both derived from the same anatomical location), and of the aortic jet velocity.\(^{14,25}\) Although values are to be referenced against normal data for each prosthesis type and size, an EOA < 0.8 cm\(^2\) and a DVI < 0.25 raise the suspicion of significant aortic PHV stenosis.

Integrative assessment

Echocardiographic detection and grading of aortic PHV obstruction includes integration of data from 2D/3D imaging of the aortic valve as well as qualitative and quantitative Doppler measures of
Figure 17 Example of PPM in a patient with a mechanical valve in mitral position. There is an anterograde flow acceleration through the prosthesis as seen with colour flow imaging in C. The transprosthetic pressure gradients are high (mean pressure gradient of 11 mmHg, D). By applying the continuity equation (A, B, and D), as explained in Figure 7, the EOA of this prosthesis is 1.2 cm2 (0.64 cm2/m2), suggesting together with the high-pressure gradient and the increased DVI, either a valve obstruction or a PPM. However, cinefluoroscopy (E and F) shows normal closing and opening angles, confirming the presence of a PPM.

Table 12 Imaging criteria or the identification and quantitation of prosthesis-patient mismatch

<table>
<thead>
<tr>
<th></th>
<th>Mild or not clinically significant</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic prosthetic valves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexed EOA (projected or measured)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI < 30 kg/m2</td>
<td>>0.85</td>
<td>0.85–0.66</td>
<td>≤0.65</td>
</tr>
<tr>
<td>BMI ≥ 30 kg/m2</td>
<td>>0.70</td>
<td>0.70–0.56</td>
<td>≤0.55</td>
</tr>
<tr>
<td>Measured EOA vs. normal reference valuea</td>
<td>Reference ± 1SD</td>
<td>Reference ± 1SD</td>
<td>Reference ± 1SD</td>
</tr>
<tr>
<td>Difference (reference EOA − measured EOA) (cm2)a</td>
<td><0.25</td>
<td><0.25</td>
<td><0.25</td>
</tr>
<tr>
<td>Valve structure and motion</td>
<td>Usually normal</td>
<td>Usually normal</td>
<td>Usually normal</td>
</tr>
<tr>
<td>Mitral prosthetic valves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexed EOA (projected or measured)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI < 30 kg/m2</td>
<td>>1.2</td>
<td>1.2–0.91</td>
<td>≤0.90</td>
</tr>
<tr>
<td>BMI ≥ 30 kg/m2</td>
<td>>1.0</td>
<td>1.0–0.76</td>
<td>≤0.75</td>
</tr>
<tr>
<td>Measured EOA vs. normal reference valuea</td>
<td>Reference ± 1SD</td>
<td>Reference ± 1SD</td>
<td>Reference ± 1SD</td>
</tr>
<tr>
<td>Difference (reference EOA − measured EOA) (cm2)a</td>
<td><0.25</td>
<td><0.25</td>
<td><0.25</td>
</tr>
<tr>
<td>Valve structure and motion</td>
<td>Usually normal</td>
<td>Usually normal</td>
<td>Usually normal</td>
</tr>
</tbody>
</table>

See Tables 7 and 8 to obtain the normal reference values of effective orifice area for the different models and sizes of prostheses.

EOA, effective orifice area; BMI, body mass index; SD, standard deviation.

aThe criteria proposed for these parameters are valid for near normal or normal stroke volume (50–90 mL).
obstruction severity. Other imaging modalities can also be used to assess valve motion, structure, and function. Interpretation of the data should be performed according to the date of valve replacement, the prosthesis' characteristics, and the haemodynamic conditions. Table 13 lists the imaging parameters used to assess aortic PHV function. When all parameters are normal, the likelihood of valve dysfunction is very low. Conversely, when the majority of the parameters are abnormal, the certainty of aortic PHV obstruction increases.

Differential diagnosis of high-pressure gradients

A high transprosthetic velocity or gradient alone is not a proof of PHV obstruction and may be secondary to PPM, high flow conditions (e.g., post-op period, anaemia, sepsis), occult mitral prosthesis regurgitation, aortic PHV regurgitation, the phenomenon of rapid pressure recovery, technical errors, or localized high central jet velocity in bileaflet mechanical valves. The flow dependency of pressure gradients highlights the need for a stepwise approach including EOA and DVI estimation. The retain algorithm for interpreting these high gradients is derived from a compilation of previously suggested approaches (Figure 20). After having excluded possible technical errors, the first step is to compare the EOA with the normal reference value of EOA for the type and size of prosthesis implanted. If the EOA is lower than the normal reference value, and especially when there is a decrease in EOA and DVI or an increase in mean gradient over serial studies, the presence of an abnormal prosthetic motion in the context of a DVI <0.25 and AT/ET >0.37 suggests prosthetic valve obstruction. If the measured EOA is close to the normal reference value, one can then calculate the indexed EOA (EOA/BSA) using the measured EOA or alternatively the normal reference value of EOA for the implanted valve (i.e. projected indexed EOA). If the result is <0.85 cm²/m², one can then surmise that PPM is present and that depending on its degree of severity, it may be partially or totally responsible for the high gradient. In this context, it is important to keep in mind that both phenomenon, i.e. PPM and intrinsic dysfunction, may coexist. Of note, PPM is present early after surgery and on all subsequent echocardiograms, so further changes in pressure gradients often account for additional intrinsic dysfunction.

Pathological aortic regurgitation

Colour Doppler evaluation

Using colour flow Doppler, the regurgitant jet into the LV during diastole can be visualized from multiple views. Initial studies that defined AR severity focused on characterization of the colour flow jet. Methods that measured jet area or jet length have significant limitations because of variations in haemodynamics, instrument settings, receiving chamber characteristics, jet eccentricity, jet impingement on chamber walls, and variability in perception by readers. The colour jet area and length, which are weakly correlated to the

Figure 18 Example of PPM in a patient with a mechanical valve in aortic position. There is an anterograde flow acceleration through the prosthesis as seen with colour flow imaging in C. The transprosthetic pressure gradient is high (mean pressure gradient of 42 mmHg, D). By applying the continuity equation (A, B, and D) as explained in Figure 1, the EOA of this prosthesis is found to be 1.01 cm² (0.52 cm²/m²), suggesting together with the high-pressure gradient and the low DVI, either a valve obstruction or a PPM. However, cinefluoroscopy (E and F) shows normal closing and opening angles, confirming the presence of a PPM.
degree of prosthetic AR, are thus not recommended to quantify prosthetic AR. The ratios of regurgitant jet diameter/LVOT diameter from parasternal long-axis view and jet area/LVOT area from parasternal short-axis view just below the prosthesis can be used to estimate the severity of central regurgitation (Figure 11). A ratio of jet diameter/LVOT diameter ≥ 65% suggests severe regurgitation. However, using this approach, regurgitation severity may be overestimated in the case of eccentric or crescent-shaped jets and underestimated in the case of jets impinging the LVOT wall or the anterior mitral valve.

For semi-quantitative evaluation of paravalvular AR, careful imaging of the neck of the jet in a short-axis view, at the level of the sewing ring, is required to accurately define its circumferential extent, which can be expressed as a percentage of the total sewing ring circumference (<10% = mild; 10–29% = moderate; ≥30% severe) (Figure 16). This method is however limited by the eccentric direction and irregular shape of the defects. Rocksing of the prosthesis is usually associated with >40% dehiscence and thus severe regurgitation. The width of the paravalvular jet(s) at origin in multiple views is also helpful to assess severity.

Due to the shadowing caused by the prosthesis ring or stent, the vena contracta width (the regurgitant jet as it traverses the aortic orifice or the effective regurgitant area) may be difficult to measure correctly in the long-axis view and is inaccurate in case of multiple jets, irregular orifice shape, or radial extent of paravalvular jets. When feasible, the measurement of the vena contracta width is useful to distinguish mild from severe prosthetic AR. Using a Nyquist limit of 50–60 cm/s, a vena contracta width of <3 mm correlates with mild AR, whereas a width >6 mm indicates severe AR.

Quantitative assessments based on the proximal isovelocity surface area (PISA) are generally difficult to apply to mechanical aortic prostheses. When assessable, especially in bioprostheses with central valvular regurgitation, imaging of the flow convergence zone is usually obtained from the apical three- or five-chamber or parasternal long-axis views. The radius of the PISA is measured at diastole using the first aliasing shell. R Vol and EROA are obtained using the standard formulas. An EROA ≥ 30 mm² or an R Vol ≥ 60 mL indicates severe prosthetic AR.

Spectral Doppler parameters are useful to assess prosthetic AR, because they are less sensitive to the prosthesis position and the associated shadowing and artefacts. CW Doppler of the AR jet is classically best obtained from the apical five-chamber view. Effort should be made to obtain correct Doppler angle to minimize errors related to possible ultrasound beam misalignment. For eccentric jets, better signals may be obtained from the right parasternal window. The PHT of the CW regurgitant jet signal is useful when the
Table 13 Grading aortic prosthetic valve obstruction

<table>
<thead>
<tr>
<th>Qualitative</th>
<th>Normal</th>
<th>Possible obstruction</th>
<th>Significant obstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve structure and motion</td>
<td>Normal</td>
<td>Often abnormal<sup>a</sup></td>
<td>Abnormal<sup>a</sup></td>
</tr>
<tr>
<td>Transvalvular flow envelope<sup>b</sup></td>
<td>Triangular, early peaking</td>
<td>Triangular to intermediate</td>
<td>Rounded, symmetrical</td>
</tr>
<tr>
<td>Semi-quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceleration time (ms)<sup>b</sup></td>
<td><80</td>
<td>80–100</td>
<td>>100</td>
</tr>
<tr>
<td>Acceleration time/LV ejection time ratio</td>
<td><0.32</td>
<td>0.32–0.37</td>
<td>>0.37</td>
</tr>
<tr>
<td>Quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow dependent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak velocity (m/s)<sup>c,d</sup></td>
<td><3</td>
<td>3–3.9</td>
<td>≥4</td>
</tr>
<tr>
<td>Mean gradient (mmHg)<sup>c,d</sup></td>
<td><20</td>
<td>20–34</td>
<td>≥35</td>
</tr>
<tr>
<td>Increase in mean gradient during stress echo</td>
<td><10</td>
<td>10–19</td>
<td>≥20</td>
</tr>
<tr>
<td>Increase in mean gradient during follow-up</td>
<td><10</td>
<td>10–19</td>
<td>≥20</td>
</tr>
<tr>
<td>Flow independent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective orifice area (cm<sup>2</sup>)<sup>c</sup></td>
<td>>1.1</td>
<td>0.8–1.1</td>
<td><0.8</td>
</tr>
<tr>
<td>Measured EOA vs. normal reference value<sup>c</sup></td>
<td>Reference ± 1SD</td>
<td>Reference − 2SD</td>
<td></td>
</tr>
<tr>
<td>Difference (reference EOA − measured EOA) (cm<sup>2</sup>)</td>
<td><0.25</td>
<td>0.25–0.35</td>
<td>>0.35</td>
</tr>
<tr>
<td>Doppler velocity index<sup>c</sup></td>
<td>≥0.35</td>
<td>0.25–0.34</td>
<td>≥0.25</td>
</tr>
</tbody>
</table>

See Table 7 to obtain the normal reference values of effective orifice area for the different models and sizes of prostheses.

^aAbnormal mechanical valves: occluder that is immobile or with restricted mobility, thrombus, or pannus; abnormal biologic valves: leaflet thickening/calcification, thrombus, or pannus.

^bThese parameters are affected by LV function and heart rate.

^cThe criteria proposed for these parameters are valid for near normal or normal stroke volume (50–90 mL) and flow rate (200–300 mL/s).

^dThese parameters are more affected by low or high flow states including low LV output and concomitant aortic regurgitation.

^eThis parameter is dependent on the size of the LV outflow tract.

value is < 200 ms, suggesting severe AR, or > 500 ms, consistent with mild AR. However, intermediate values of PHT (200–500 ms) are less specific as they are influenced by other variables such as heart rate, LV compliance and pressures, and the acuteness of AR (i.e. in acute AR, the PHT is generally short, regardless of the severity of AR).^{143,144} For imaging the diastolic flow reversal in the descending aorta, (i) the sample volume is placed just distal to the origin of the left subclavian artery; (ii) the pulsed wave Doppler is aligned along the major axis of the aorta; (iii) the Doppler filter is decreased to its lowest setting to allow detection of low velocities (< 10 cm/s) and the magnitude of the velocity scale is set to 60–80 cm/s for more accurate measurement of end-diastolic flow velocity. With milder degrees of regurgitation, there is a brief reversal of flow limited to early diastole. As the degree of the regurgitation increases, the duration and the velocity of the reversal flow during diastole increase. The presence of holodiastolic flow reversal in the descending thoracic aorta is indicative of at least moderate AR; severe AR is suspected when the end-diastolic velocity is > 20 cm/s.¹⁴⁵ The main limitation of this parameter is that it is highly influenced by aorta and LV compliance. Elderly patients with stiff aorta may have holodiastolic flow reversal with trivial or mild AR.

Regurgitant volume can be estimated as the difference between stroke volume at the LVOT (or 2D/3D-derived total LV stroke volume) and the flow at the mitral annulus or at the RVOT. This method cannot be used if there is concomitant > mild mitral or pulmonary regurgitation, respectively. This approach is time consuming and is associated with several pitfalls, the most important being the accurate measure of mitral annulus or RVOT diameter. In general, a regurgitant fraction (RVol divided by the LVOT stroke volume) > 50% indicates severe prosthetic AR.^{16,20}

The impact of prosthetic AR on the LV depends on the chronicity and severity of the regurgitation as well as on any pre-existing LV dysfunction. In the absence of other conditions, LV dilatation is sensitive for chronic significant AR while a normal LV size almost excludes severe chronic AR. Similarly, if LV volumes fail to decrease after valve replacement for AR or tend to increase after valve replacement for AS and in particular if the LV is hyperdynamic, a haemodynamically significant leak should be suspected. Conversely, LV dilatation may be absent in acute severe AR.^{14,20}

Integrative assessment

Echocardiographic assessment of prosthetic AR includes integration of data from 2D/3D imaging of the aortic root, aortic valve, and ventricle as well as Doppler measures of regurgitation severity (Table 14). Effort should be made to quantify the degree of regurgitation, except in the presence of mild or less prosthetic AR. The measurement of the vena contracta width and the calculation of the EROA, RVol, and regurgitant fraction are recommended, when feasible. Adjunctive parameters help to consolidate the severity of AR and should be widely used particularly when there is discordance between the quantified degree of prosthetic AR and the clinical context. These parameters should be interpreted according
to the chronicity of prosthetic AR and the LV remodelling. In case of persistent discrepant results and after elimination of technical errors, or when echocardiography is inconclusive, other imaging modalities can be used in experienced centres.

Mitral prosthetic valve

Baseline assessment and serial reports

As for aortic PHV, the echocardiographic report should be comprehensive (Tables 4 and 10), including the documentation of (i) the type and size of the prosthetic valve, (ii) blood pressure, (iii) valve morphology and function (including the measure of closing angle for bileaflet mechanical valves when possible), (iv) prosthetic pressure gradients and flow velocities (PHT, DVI, EOA), (v) the heart rate at which gradients are measured, (vi) the presence of regurgitation (location, severity), (vii) LV size and function, (viii) LA size, and (ix) pulmonary pressure.\(^7,14\) Calculated EOA should be compared with reference values for the prosthetic valve type. The presence of any PPM should be reported. When needed, the type and reason for the use of other imaging approaches are to be acknowledged. Any changes in mitral PHV characteristics are documented.

Imaging assessment

All the components of the mitral PHV should be evaluated (sewing ring, cusps, occluder(s), surrounding areas). TTE is the first-line imaging, while TOE is recommended in case of suspected or confirmed dysfunction.\(^7,21,27,29,134\) Cinefluoroscopy, cardiac CT, or
CMR can be used as complementary tools, if needed (see above). On TTE, para-sternal long- and short-axis views, and all apical views with multiple angulation and off-axis cuts are needed to scan the whole sewing ring, the mitral subvalvular apparatus, and the leaflet/occluder(s) motion. The stents of biological valve are often well seen in the apical four-chamber view. Colour Doppler imaging is used to demonstrate normal forward flow, the expected washing jets, and when present pathologic regurgitation. Acoustic shadowing effects may result in inability to adequately image the LA side of the mitral PHVs, particularly in mechanical prostheses (Figure 5 Panel A and B). Visualization can be improved when the ultrasound beam is oriented parallel to the direction of the occluder opening. The sub-costal view can be helpful to show prosthetic jets since the effect of shielding is minimized. TOE is often superior to TTE in detecting and determining the localization and mechanism of prosthetic MR. TOE provides better visualization of the LA and mitral regurgitant jet, but acoustic shadowing limits visualization of the LV (Figure 5, Panel C and D). The regurgitant jets are best visualized in the low-oesophageal four-chamber view with rotation of the probe to two- and three-chamber views together with anteflexion and retroflexion. If properly aligned in the centre of the sector, transverse transgastric short-axis view is useful for imaging the entire circumference of the valve/sewing ring. The long-axis view (TTE/TOE) is used to measure the LVOT (see above), while the short-axis view allows determining the circumferential extent of any paravalvular leak. 3D echocardiography, especially during TOE, is ideal for imaging the entire mitral prosthesis, the whole sewing ring, and the extent of paravalvular regurgitation (Figure 21).

Valve morphology and function

Imaging may determine the aetiology of obstruction or regurgitation by showing evidence of leaflet degeneration (thickening, calcification, abnormal mobility) in bioprostheses, a rocking motion of the sewing ring or abnormal occluder motion in mechanical PHVs. The occluder in mechanical valves should open quickly and fully and reduced opening is a reliable sign of obstruction provided that LV function is good. In normal bileaflet valves, there might be a slight oscillation of the leaflets during diastole and slight temporal asymmetry of closure. Mitral valve dehiscence occurs mainly in the posterior or lateral region and is only very rarely located anteriorly. The anatomic orientation of the occluders should normally mimic native valve opening; this preserves the inflow pattern and intraventricular LV vortices that are important for LV filling. This is of particular importance for single tilting disk prostheses where the major orifice directs the flow anteriorly as opposed to posteriorly. In a bioprosthesis, the cusps should be thin and fully mobile, with no prolapse. As for aortic position, it is normal to see stitches, fibrin strands, or echoes resembling bubbles in the LV. Heavily calcified cusps (Figure 22) and reduced occluder motion are the most reliable signs of obstruction. In a bileaflet mechanical valve, partial obstruction may be obvious when one leaflet clearly moves less than the other.

Table 14 Grading the severity of aortic prosthetic valve regurgitation

<table>
<thead>
<tr>
<th>Qualitative</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve structure and motion</td>
<td>Usually normal</td>
<td>Usually abnormala</td>
<td>Usually abnormala</td>
</tr>
<tr>
<td>Colour flow AR jet widthb</td>
<td>Small</td>
<td>Intermediate</td>
<td>Large (>65% of LVOT diameter)</td>
</tr>
<tr>
<td>CW signal of AR jet</td>
<td>Incomplete or faint</td>
<td>Dense</td>
<td>Dense</td>
</tr>
<tr>
<td>Diastolic flow reversal in the descending aorta</td>
<td>Brief, protodiastolic flow reversal</td>
<td>Intermediate</td>
<td>Holodiastolic flow reversal (end-diastolic velocity >20 cm/s)</td>
</tr>
<tr>
<td>Semi-quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure half time (ms)c</td>
<td>> 500</td>
<td>200 – 500</td>
<td>< 200</td>
</tr>
<tr>
<td>Circumferential extent of paravalvular regurgitation (%)d</td>
<td>< 10</td>
<td>10 – 29</td>
<td>≥ 30</td>
</tr>
<tr>
<td>VC width (mm)</td>
<td>< 3</td>
<td>3 – 6</td>
<td>> 6</td>
</tr>
<tr>
<td>Quantitative</td>
<td>EROA (mm²)</td>
<td>RVol (mL)e</td>
<td>Regurgitant fraction (%)</td>
</tr>
<tr>
<td></td>
<td>< 10</td>
<td>10 – 29</td>
<td>< 30</td>
</tr>
<tr>
<td></td>
<td>30 – 59</td>
<td>30 – 50</td>
<td>≥ 60</td>
</tr>
<tr>
<td>+ LV sizef</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AR, aortic regurgitation; EROA, effective regurgitant orifice; RVol, regurgitant volume; PHT, pressure half time.
AAbnormal mechanical valves: immobile occluder, dehiscence, or rocking (paravalvular regurgitation); abnormal biologic valves: cusps thickening/calcification or prolapse, dehiscence, or rocking (paravalvular regurgitation).
BParameter applicable to central jets and is less accurate in eccentric jets.
CThis parameter is influenced by left ventricular compliance.
DApplies only to paravalvular regurgitation.
ECan be estimated by the difference of stroke volume in LVOT minus stroke volume in RV outflow tract (if no >mild pulmonary regurgitation) or at the mitral annulus (if no >mild mitral regurgitation).
FApplies to chronic, late post-operative prosthetic aortic valve regurgitation in the absence of other aetiologies.
other. If the occluder cannot be imaged, obstruction can be suspected when there is a failure of the colour map to fill (narrow high-velocity inflow jet wrap-around aliasing) the PHV orifice in all views. In bioprostheses, the jet can be narrow at the level of the immobile cusps, but can expand rapidly to fill the orifice towards the tips of the stents. Severe impairment in LV function may also cause reduced valve opening, but this will be associated with a thin, low-velocity inflow signal on colour imaging.

Acquired mitral PHV obstruction

Doppler assessment

Doppler ultrasound assessment (CW and pulsed wave) of mitral PHVs is obtained from the apical positions with TTE and low-oesophageal four-chamber view with TOE. Off-axis views may be necessary to correctly align the beam parallel to flow.

Mitrail inflow peak early diastolic velocity (E velocity) in most normally functioning bileaflet mechanical PHVs is < 1.9 m/s but can be as high as 2.4 m/s in small mismatched prostheses. The normal mean transmitral gradient is generally < 5 – 6 mmHg. Increasing grades of stenosis are associated with increasing transmitral velocities and gradients. However, prosthesis size, ventricular and atrial function, chamber compliances, relative chamber pressures, and the presence of PPM or of any obstruction can influence trans-mitral velocities. The presence of tachycardia leads to a shortening of the diastolic filling and increased in the peak early mitral velocity. Similarly, significant MR, which leads to a volume overload state, increases transmitral flow velocities. All this highlights the need for comparing serial values in the same patient over time.

In the absence of any these conditions, an early mitral peak velocity ≥2.5 m/s and a mean transmitral pressure gradient ≥10 mmHg suggest the presence of severe mitral prosthetic obstruction. Significant mitral PHV obstruction is usually associated with increased transprosthetic [mean gradient (≥ 12 mmHg) during stress echocardiography (Figure 23)]. A change from immediate post-operative values is also supportive of acquired PHV obstruction. An increase in mean gradient > 5 mmHg with similar heart rates is suggestive of the occurrence of valve obstruction.

A PHT < 130 ms is often consistent with normal mitral PHV function, whereas a PHT > 200 ms on sequential echocardiograms suggests the presence of significant stenosis. As PHT is influenced by

Figure 21 Paravalvular leak due to mitral valve prosthesis dehiscence. Slit-like dehiscence of a bioprosthesis in mitral position from transoesophageal approach, with 3D colour flow Doppler showing the presence of a severe paravalvular regurgitation located posteriorly and involving > 25% of the prosthesis circumference from anterior septum to posterior wall of the left atrium (LA) (B and D). The schematic representation of the prosthesis orientation as seen from the 3D left atrial perspective in A and C (after reorientation with the aorta up).
heart rate, LA, and LV compliance, patients with tachycardia or reduced atrioventricular compliance may exhibit a normal PHT despite the presence of significant prosthetic valve stenosis. PHT should not be obtained in case of first-degree atrioventricular block when E and A velocities are merged or the diastolic filling period is short. Slight increments in PHT (130–200 ms) are to be interpreted with caution.149,151

The EOA and the DVI (VTIPrV/VTILVOT) are less flow-dependent parameters. The EOA is calculated using the continuity equation (stroke volume/VTIPrV), which is not valid in case of mild MR or AR. In case of AR, the RVOT stroke volume can be used as an alternative approach. Conversely, the PHT-derived EOA is not valid in prosthetic mitral valve.103,108 The correct interpretation of DVI requires the absence of significant AR. Although values are to be referenced against normal data for each prosthesis type and size, an EOA,1c m² and aD V I , 2.5 raise suspicion for significant mitral PHV obstruction.14

Integrative assessment
Echocardiographic assessment of mitral PHV obstruction includes integration of data from 2D/3D imaging of the mitral valve as well as qualitative and quantitative Doppler measures of obstruction severity (Figure 24). Other imaging modalities, when indicated, can be used to alternatively assess valve motion, structure, and function. For instance, in case of Doppler silent prosthetic valve thrombosis, which is characterized by normal or slightly elevated Doppler gradients, identification of abnormal disk motion of the bileaflet mitral PHV can require the use of cinefluoroscopy or cardiac CT.45

Interpretation of the data should be performed according to the date of valve replacement, the prosthesis’ characteristics, and the haemodynamic conditions. Table 15 lists the imaging parameters used to assess mitral PHV function. When all parameters are normal, the probability of valve dysfunction is very low while PHV dysfunction is likely if the majority of them are abnormal.149

Differential diagnosis of high-pressure gradients
In a mitral prosthesis, a mean gradient of 6 mmHg or more may indicate pathologic obstruction, the presence of hyperdynamic states (e.g. post-op period, anaemia, sepsis), tachycardia, PPM, regurgitation, technical errors, or localized high central jet velocity in bileaflet mechanical valves.7,14,102,122,136 To overcome the flow dependency of pressure gradients, a stepwise approach including EOA and DVI estimation is required (Figure 24). After having excluded possible technical errors, the EOA is compared with the normal reference value of EOA for the type and size of prosthesis implanted. If the EOA is lower than the normal reference value, and especially when there is a decrease in EOA and DVI during follow-up, the presence of an abnormal prosthetic motion (or suspected by abnormal colour flow) in the context of a DVI ≥ 2.2 and PHT ≥ 130 ms suggests prosthetic valve obstruction. A PHT < 130–200 ms in a patient with a high transprosthetic gradient is not a sign of pathologic obstruction but rather is a sign of a high transprosthetic flow rate, especially when the leaflet/disc mobility is normal. In this situation, lower velocities can be obtained by careful Doppler beam orientation to avoid this central acceleration. If the EOA is close to the

Figure 22 Degenerative mitral bioprosthesis and high gradient. Dysfunctional bioprosthesis as seen with 2D and 3D transoesophageal echocardiography (TOE). 2D (A) and 3D (B) colour flow imaging of the prosthesis show an abnormal intraprosthetic regurgitation (yellow arrow in 2D TOE and red arrow in 3D TOE). 2D colour flow imaging of the anterograde flow shows a significant aliasing at the level of the prosthesis indicative of a high-velocity flow profile (C). Incomplete opening of one of the cusps (anterior) is seen from the 3D dataset (D, white arrow). E and F showing the anatomic orifice area (AOA) obtained by planimetry and the EOA obtained by the continuity equation. Both confirm significant obstruction.
reference value, one can calculate the indexed EOA (EOA/BSA) with measured or projected (normal reference value) EOA. If the indexed is ≤1.2 cm²/m², one can assume that PPM is present and that depending on its degree of severity, it may be partially or totally responsible for the high gradient. In this context, it is important to keep in mind that both phenomenon, i.e. PPM and intrinsic dysfunction, may coexist. Of note, PPM is present early after surgery and on all subsequent echocardiograms, so further changes in pressure gradients often account for additional intrinsic dysfunction. In the other case (indexed EOA >1.2 cm²/m²), if the leaflet mobility is considered to be normal or is undetermined and the DVI is >2.2, one should suspect occult mitral trans- or paravalvular regurgitation or high flow states.

Pathological mitral regurgitation

Colour Doppler evaluation

Rating the severity of prosthetic MR is also a considerable challenge. The volume of the regurgitant flow jet is determined by the size of the regurgitant orifice, the driving force from the pressure gradient across the orifice, and the duration of systole.²⁰

Colour flow imaging is the most common way to assess MR severity. The general assumption is that as the severity of the MR increases, the size and the extent of the jet into the LA also increase.¹⁵¹ However, the relation between jet area and MR severity presents a large range of variability. So, this approach is a source of many errors and is not recommended to assess MR severity.²⁰ Nevertheless, the detection of a large eccentric jet adhering, swirling, and reaching the posterior wall of the LA is in favour of significant prosthetic MR. Conversely, small thin jets that appear just beyond the mitral leaflets usually indicate mild MR.¹⁵⁴

On colour Doppler, paravalvular leaks have a typical appearance of a jet that passes from the LA into the LA outside the prosthesis ring and often projects into the atrium in an eccentric direction. For semi-quantitative evaluation of paravalvular MR, careful imaging of the neck of the jet in a short-axis view, at the level of the sewing ring, is required to accurately define its circumferential extent, which can be expressed as a percentage of the total sewing ring circumference (<10% = mild; 10–29% = moderate; ≥30% severe).¹⁵⁵ Rocking of the prosthesis is usually associated with >40% dehiscence and thus severe regurgitation.

The vena contracta is the area of the jet as it leaves the regurgitant orifice; it reflects thus the regurgitant orifice area. The vena contracta width is useful to distinguish mild from severe prosthetic MR. It is measure from the parasternal long-axis or apical four-chamber views. A vena contracta <3 mm indicates mild prosthetic MR while a width ≥7 mm defines severe MR.¹⁵¹ Due to the shadowing caused by the prosthetic material, the vena contracta width may be difficult to assess. It is inaccurate in case of multiple jets or irregular orifice shape.¹⁴,²⁰

The PISA method is feasible, especially in bioprosthetic valves (Figure 13). Imaging of the flow convergence zone is usually obtained from the apical four-chamber view, though other views can be used if parallel to regurgitant flow direction.¹⁵³,¹⁵⁶ The area of interest is optimized by lowering imaging depth and reducing the Nyquist limit to ~15–40 cm/s. The radius of the PISA is measured at mid-systole.

Figure 23 Mitral valve prosthesis dysfunction and exercise echocardiography. Significant increase in mean pressure gradient (MPG) during exercise echocardiography over a prosthetic mechanical valve in mitral position (C) in a patient with mildly elevated resting gradients (A), complaining of exercise-induced dyspnoea. During exercise (D), there is a significant increase in transtricuspid pressure gradient (TTPG) compared with rest (B) that parallels the increase in pressure gradients across the mitral prosthesis.
using the first aliasing. R Vol and EROA are obtained using the standard formulas. Qualitatively, the presence of flow convergence at a Nyquist limit of 50–60 cm/s should alert to the presence of severe MR. Grading of severity of MR classifies regurgitation as mild, moderate, or severe, and sub-classifies the moderate regurgitation group into ‘mild-to-moderate’ (EROA of 20–29 mm² or a R Vol of 30–44 mL) and ‘moderate-to-severe’ (EROA of 30–39 mm² or a R Vol of 45–59 mL). Quantitatively, prosthetic MR is considered severe if EROA is ≥40 mm² and R Vol ≥60 mL. The PISA method faces several advantages and limitations, which have been addressed elsewhere. Briefly, the PISA method is based on the assumption of hemispheric symmetry of the velocity distribution proximal to the circular regurgitant lesion, which may not hold for eccentric jets, multiple jets, or complex or elliptical regurgitant orifices. Also the acoustic shadowing may hamper the proper visualization of the PISA.

Spectral Doppler parameters can be used as additive or alternative features to corroborate severity of regurgitation. In the absence

Figure 24 Algorithm for evaluation of high transvalvular mitral gradient. DVI, Doppler velocity index; EOA, effective orifice area; PPM, patient-prosthesis mismatch. *Bileaflet valves only. **Consider underestimation of LVOT diameter and/or LVOT VTI. †If leaflet/disc motion unclear by TTE, consider cinefluoroscopy or cardiac CT. ‡‡Consider overestimation of LVOT diameter and/or LVOT VTI.
Imaging assessment of prosthetic heart valves

Table 15 Grading mitral prosthetic valve obstruction

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Possible obstruction</th>
<th>Significant obstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve structure and motion</td>
<td>Normal</td>
<td>Often abnormal</td>
<td>Abnormal</td>
</tr>
<tr>
<td>Semi-quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure half time (ms)</td>
<td><130</td>
<td>130–200</td>
<td>>200</td>
</tr>
<tr>
<td>Quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow dependent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak velocity (m/s)</td>
<td><1.9</td>
<td>1.9–2.5</td>
<td>≥2.5</td>
</tr>
<tr>
<td>Mean gradient (mmHg)</td>
<td>≤5</td>
<td>6–10</td>
<td>≥10</td>
</tr>
<tr>
<td>Increase in mean gradient</td>
<td>≤5</td>
<td>5–12</td>
<td>≥12</td>
</tr>
<tr>
<td>Follow-up increase in mean gradient</td>
<td>≤5</td>
<td>3–5</td>
<td>>5</td>
</tr>
<tr>
<td>Flow independent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective orifice area (cm²)</td>
<td>≥2</td>
<td>1–2</td>
<td><1</td>
</tr>
<tr>
<td>Effective orifice area vs. normal reference value</td>
<td>Reference ± 1SD</td>
<td><Reference − 1SD</td>
<td><Reference − 2SD</td>
</tr>
<tr>
<td>Difference (reference EOA – measured EOA) (cm²)</td>
<td><0.25</td>
<td>0.25–0.35</td>
<td>>0.35</td>
</tr>
<tr>
<td>Doppler velocity index</td>
<td><2.2</td>
<td>2.2–2.5</td>
<td>≥2.5</td>
</tr>
</tbody>
</table>

See Table 8 to obtain the normal reference values of effective orifice area for the different models and sizes of prostheses.

PHT, pressure half time; SD, standard deviation.

aAbnormal mechanical valves: occluder that is immobile or with restricted mobility, thrombus or pannus; abnormal biologic valves: cusps thickening/calcification, thrombus, or pannus.
bThis parameter is influenced by heart rate, left atrial compliance, and left ventricular compliance. This parameter should not be measured during tachycardia, first atrioventricular block, or circumstances that cause fusion between the E and A velocities or shorten the diastolic filling period.
cThe criteria proposed for these parameters are valid for normal or normal diastolic volume (i.e. stroke volume: 50–90 mL) and heart rate (50–80 bpm).
dThese parameters are also abnormal in the presence of significant mitral prosthesis regurgitation.
eThis parameter is dependent on the size of the LV outflow tract. In atrial fibrillation, the VTIPMH and the VTI_LVOT should be measured in matched cardiac cycles.
fThese parameters are more affected by flow and heart rate.
gThese parameters are not valid when >mild concomitant aortic or mitral regurgitation is present.

of prosthetic mitral obstruction, the increase in transprosthetic mitral flow that occurs with increasing MR severity can be detected as higher flow velocities during early diastolic filling (increased E velocity). In the absence of mitral stenosis, a peak E velocity >1.5 m/s at PW Doppler suggests severe prosthetic MR. Conversely, a dominant A wave (atrial contraction) basically excludes severe MR. The presence of a retrograde systolic flow (PW Doppler 1 cm deep into the pulmonary vein) in one or more of the pulmonary veins is another specific parameter for significant MR (Figure 13).157 A dense MR signal with a full CW Doppler envelope also indicates more severe MR than a faint signal. When truncated (notched) with a triangular contour and an early peak velocity (blunt), it indicates elevated LA pressure or a prominent regurgitant pressure wave in the LA due to severe MR. In eccentric MR, it may be difficult to record the full CW envelope of the jet because of its eccentricity.

Regurgitant volume can be calculated by subtracting the forward stroke volume at the LVOT (or RV stroke volume if >mild AR) from the total transmirtal stroke volume (or 2D/3D-derived total LV stroke volume). This approach is time consuming and is associated with several drawbacks. In general, a regurgitant fraction >50% indicates severe prosthetic MR.

The impact of prosthetic MR on LV, LA, and pulmonary pressures depends on the chronicity and severity of the regurgitation as well as on the pre-existing cardiomyopathy. In the absence of other conditions, LV and LA dilatation are sensitive for chronic significant MR, while normal size almost excludes severe chronic MR. Similarly, if LV volumes fail to decrease after valve replacement for MR or tend to increase after valve replacement for mitral stenosis, and in particular if the LV is hyperdynamic, a haemodynamically significant leak should be suspected among other factors. Conversely, LV or LA dilatation may be absent in acute severe MR.

Given that direct detection of prosthetic MR is often not possible with TTE, the presence of occult prosthetic MR should be suspected when the following signs are present: (i) the presence of flow convergence on the LV side of the prosthesis during systole; (ii) the presence of a turbulent colour flow within the LA distal to the acoustic shadow; (iii) increased mitral peak E wave velocity, gradient, and/or DVI; (iv) unexplained or new worsening of pulmonary arterial hypertension; and a dilated and hyperkinetic LV. PHT is often normal in prosthetic MR unless there is concomitant stenosis.149,158 TOE should be systematically performed when there is a clinical or TTE suspicion of occult MR.134

Integrative assessment

Echocardiographic assessment of prosthetic MR includes integration of data from 2D/3D imaging of the valve and ventricle as well as Doppler measures of regurgitation severity (Table 16). An effort should be made to quantify the degree of regurgitation, except in the presence of mild or less prosthetic MR. The measurement of the vena contracta width and the calculation of the EROA, RVol, and regurgitant fraction is recommended, when feasible. Adjunctive parameters help to consolidate the severity of MR and should be widely used particularly when there is discordance between the
quantified degree of prosthetic MR and the clinical context. These parameters should be interpreted according to the chronicity of prosthetic MR and the LV remodelling. If results are still discrepant and after elimination of technical errors, or when echocardiography is inconclusive, other imaging modalities can be used in experienced centres to assess valve motion, structure, and function.

Tricuspid prosthetic valve

Baseline assessment and serial reports

The echocardiographic report includes the documentation of (i) the type and size of the prosthetic valve, (ii) blood pressure, (iii) valve morphology and function, (iv) prosthetic pressure gradients and flow velocities (EOA, DVI), (v) the heart rate at which gradients are measured, (vi) the presence of regurgitation (location, severity), (vii) RV size and function, (viii) RA size, (ix) inferior vena cava dimensions and respiratory changes, and (x) pulmonary pressure (Tables 4 and 10). Calculated EOA should be compared with reference values for the prosthetic valve type. When needed, the type and reason for the use of other imaging approaches are to be acknowledged. Any changes in tricuspid PHV characteristics are documented.

Imaging assessment

Because of the anterior position of the tricuspid PHV, assessment of tricuspid valve by TTE is generally superior to imaging by TOE. The three main TTE views allowing the tricuspid valve visualization are the parasternal (long-axis view of RV inflow, short-axis view at the level of the aortic valve), the apical four-chamber, and the sub-costal views. All views, particularly from the apex, will need multiple tilting to obtain optimal views of the RV and tricuspid valve. The RV inflow and sub-costal views are very useful for assessing colour flow through tricuspid prosthesis, because the acoustic shadowing interference is less than in apical views. With TOE standard views of the tricuspid prosthesis include mid-oesophageal four-chamber and modified bicaval views, the mid-oesophageal inflow–outflow view, and the transgastric RV inflow–outflow view.

Valve morphology and function

Imaging may identify the aetiology of PHV dysfunction including obstruction or regurgitation due to bioprosthesis degeneration (thickening, calcification, abnormal mobility), rocking motion of the sewing ring, or abnormal occluder motion in mechanical PHVs.

Table 16 Imaging criteria for grading the severity of prosthetic mitral valve regurgitation

<table>
<thead>
<tr>
<th>Quality</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve structure and motion</td>
<td>Usually normal</td>
<td>Usually abnormal</td>
<td>Usually abnormal</td>
</tr>
<tr>
<td>Colour flow MR jet</td>
<td>Small</td>
<td>Intermediate</td>
<td>Large central or eccentric jet adhering, swirling, and reaching the posterior LA wall</td>
</tr>
<tr>
<td>Flow convergence</td>
<td>No or small</td>
<td>Intermediate</td>
<td>Large</td>
</tr>
<tr>
<td>CW signal of MR jet</td>
<td>Faint/Parabolic</td>
<td>Dense/Parabolic</td>
<td>Dense/triangular</td>
</tr>
<tr>
<td>Pulmonary vein flow</td>
<td>Systolic dominance</td>
<td>Systolic blunting</td>
<td>Systolic flow reversal</td>
</tr>
<tr>
<td>Mitral inflow</td>
<td>Variable</td>
<td>Variable</td>
<td>Peak velocity ≥ 1.9 m/s; Mean gradient ≥ 5 mmHg</td>
</tr>
<tr>
<td>Doppler velocity index (VTI_{p,MV}/VTI_{LVOT})</td>
<td><2.2</td>
<td>2.2–2.5</td>
<td>≥ 2.5</td>
</tr>
<tr>
<td>VC width (mm)</td>
<td><3</td>
<td>3–5.9</td>
<td>≥ 6</td>
</tr>
<tr>
<td>Circumferential extent of paravalvular regurgitation (%)</td>
<td><10%</td>
<td>10–29%</td>
<td>≥ 30%</td>
</tr>
<tr>
<td>Quantitative</td>
<td>EROA (mm²)</td>
<td><20</td>
<td>20–39</td>
</tr>
<tr>
<td>RVol (mL)</td>
<td><30</td>
<td>30–59</td>
<td>≥ 60</td>
</tr>
<tr>
<td>Regurgitant fraction (%)</td>
<td><30</td>
<td>30–50</td>
<td>≥ 50</td>
</tr>
<tr>
<td>LV and LA size and the systolic pulmonary arterial pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Abnormal mechanical valves: immobile occluder, dehiscence, or rocking (paravalvular regurgitation); abnormal biologic valves: cusps thickening/calcification, dehiscence, or rocking (paravalvular regurgitation).

*Parameter applicable to central jets and is less accurate in eccentric jets.

*At a Nyquist limit of 50–60 cm/s.

*PISA radius < 0.4 and ≥ 0.9 cm for central jets, respectively, with a baseline shift at a Nyquist limit of 40 cm/s.

*Unless other reasons of systolic blunting (atrial fibrillation, elevated LA pressure).

*Pulmonary venous systolic flow reversal is specific but not sensitive for severe MR.

*Applies only to paravalvular regurgitation.

*These quantitative parameters are less well validated than in native MR.

*Can be estimated by the PISA method if feasible or by calculating the difference between stroke volume measured at the mitral anulus and stroke volume measured in the LVOT (if no > mild aortic regurgitation).

*Applies to chronic, late post-operative prosthetic mitral valve regurgitation in the absence of other aetiologies and acute MR.
Acquired tricuspid PHV obstruction

Doppler assessment

Doppler ultrasound assessment (CW and pulsed wave) of tricuspid PHVs is obtained from multiple views. Various transducer positions and off-axis views are used to correctly align the ultrasound beam as much as parallel to flow. Determination of the severity of tricuspid PHV stenosis has been validated in a limited number of patients.

Tricuspid inflow peak early diastolic velocity (E velocity) in most normally functioning tricuspid PHVs is <1.9 to 2 m/s. The normal mean transtricuspid gradient is often <6 to 9 mmHg, depending on the prosthesis type. Increasing grades of obstruction are associated with increasing transmural velocities and gradients. However, velocities vary with respiration, heart rate, chamber compliances and pressures, and the presence of any obstruction. To minimize the respiratory flow variations, averaging a minimum of 5 cycles (during end-expiratory or quiet respiration) is recommended whether the patient is in sinus rhythm or in atrial fibrillation.

In the absence of tachycardia or significant TR, an early tricuspid peak velocity ≥1.9–2 m/s and a mean transtricuspid pressure gradient ≥6–9 mmHg are suggestive of possible tricuspid prosthetic obstruction.

A short PHT is often consistent with normal tricuspid PHV function, whereas a significantly prolonged PHT on sequential echocardiograms suggests possible stenosis. As this parameter is influenced by heart rate and right chambers compliance, PHT should be interpreted with caution.

The EOA and the DVI (VTILV/VTILVOT) are less flow-dependent parameters. The DVI can be used to distinguish stenosis from regurgitation, because in both cases the gradient is increased. A DVI ≥3.2 for tricuspid bioprosthetic valves or ≥2 for mechanical bileaflet valve in the absence of significant AR suggests possible tricuspid stenosis.

The EOA derived by PHT has not been validated in tricuspid PHV. The EOA is thus calculated using the continuity equation (stroke volume/VTILV), which is not valid in case of >mild AR.

In case of AR, the RVOT can be used as an alternative approach. Of note, no cut-off value of EOA has been validated.

Integrative assessment

Echocardiographic assessment of tricuspid PHV obstruction includes integration of data from 2D/3D imaging of the tricuspid valve as well as Doppler measures of stenosis severity (Figure 25). Other imaging modalities, when indicated, can be used to alternatively assess valve motion, structure, and function. Interpretation of the data should be performed according to the date of valve replacement, the prosthesis’ characteristics, and the haemodynamic conditions.

Table 17 lists the imaging parameters used to assess tricuspid PHV function. More parameters are abnormal, the higher the likelihood of possible PHV dysfunction.

Figure 25 Echocardiographic evaluation of bioprostheses in tricuspid position. Normally functioning prosthesis in A–F. Dysfunctional prosthesis with signs of severe stenosis in G and H. The white arrows in A–C indicate the pillars of the prosthesis’s frame as seen in 2D transthoracic echocardiography (A) and 3D transoesophageal echocardiography (B, closed position; C, opened position). The haemodynamic parameters [peak early diastolic velocity, pressure half time (PHT), Doppler velocity index (DVI), and mean pressure gradient (MPG)] are all normal (E and F). Pathologic increased echogenicity of the bioprosthesis (red arrow, G), suggestive of prosthesis dysfunction and abnormal haemodynamic parameters, confirming prosthesis dysfunction (H).
Differential diagnosis of high-pressure gradients
In a tricuspid prosthesis, a mean gradient of ≥ 6 mmHg may denote pathologic obstruction, the presence of hyperdynamic states (e.g., post-op period, anaemia, sepsis), tachycardia, PPM, regurgitation, technical errors, or localized high central jet velocity (only for bileaflet mechanical valves). In the presence of normal leaflet/disc mobility, normal or mildly prolonged PHT, and normal DVI, one should suspect PPM, localized high gradient in bileaflet mechanical valves (redo the Doppler recording avoiding central jet velocities), PHV regurgitation or high flow states. Conversely, the presence of an abnormal PHV motion in the context of a high DVI, prolonged PHT, and progressive increase in mean gradient during follow-up suggests prosthetic valve obstruction.

Pathological tricuspid regurgitation
Colour Doppler evaluation
Grading the severity of prosthetic TR is in principle similar to prosthetic MR. However, because standards for determining the TR severity are less robust than for MR, the algorithms for relating colour flow-derived parameters to TR severity are less well developed. Colour flow imaging is useful for screening the presence of TR. The general assumption is that larger colour jets that extend deep into the RA represent more TR than smaller thin jets that are seen just beyond the tricuspid valve. As for MR, this method is a source of many errors and is limited by several technical and haemodynamic factors. Colour flow imaging is not recommended for assessing TR severity. Nevertheless, the detection of a large eccentric jet adhering, swirling, and reaching the posterior wall of the RA is in favour of severe TR. Conversely, small thin central jets usually indicate mild TR. It should be noted that normal bioprosthetic valve might have mild TR in the early post-operative period.

The vena contracta width of the TR is typically imaged in the apical four-chamber view using the same settings as for MR. Averaging measurements over at least two to three beats are recommended. A vena contracta ≥ 7 mm is in favour of severe while a diameter < 6 mm may be either mild or moderate TR. Due to the shadowing caused by the prosthetic material, the vena contracta width may be difficult to assess. It is inaccurate in case of multiple jets or irregular orifice shape.

Although providing quantitative assessment, the PISA method has not been validated in the setting of tricuspid PHV. However, in the absence of distortion of the flow convergence zone, the PISA method can be applied to grade severe prosthetic TR. Spectral Doppler parameters can be used as additive or alternative features to corroborate severity of regurgitation. Similar to MR, the severity of TR will affect the early tricuspid diastolic filling (E velocity). In the absence of tricuspid stenosis, an elevated tricuspid peak E velocity (1.9–2.1 cm/s or greater), although not specific, is a common finding in severe TR. The presence of a holosystolic reverse flow (PW Doppler) in the hepatic vein is another specific parameter for significant TR. A dense TR signal with a full CW Doppler envelope also indicates more severe TR than a faint signal. When truncated (notched) with a triangular contour and an early peak velocity (blunt), it indicates a prominent regurgitant pressure wave in the RA due to severe TR. In eccentric TR, it may be difficult to record the full CW envelope of the jet.

Quantitative PW Doppler method has not been validated to quantify the prosthetic TR severity.

The impact of prosthetic TR on right heart chambers depends on the chronicity and severity of the regurgitation as well as on the pre-existing conditions. In the absence of other conditions, RV and RA enlargement (with diastolic septal flattening) and inferior vena cava dilatation with minimal change on respiration are sensitive for chronic significant TR while normal size almost excludes severe chronic TR. When these findings are absent, the presence of significant TR should be questioned.

Integrative assessment
Echocardiographic assessment of prosthetic TR includes integration of data from 2D/3D imaging of the valve, right heart chambers, septal motion and inferior vena cava, as well as Doppler measures of regurgitant severity (Table 18). The consensus of the experts is to advocate grading the severity of TR by using the vena contracta width, except in the presence of mild or trivial TR. Adjunctive parameters help to consolidate about the severity of TR. These parameters should be interpreted according to the chronicity of prosthetic TR and the RV remodelling. In case of discrepant/inconclusive echo results, other imaging modalities imaging can be used in experienced centres to assess valve motion, structure, and function.

Pulmonary prosthetic valve

Baseline assessment and serial reports
The echocardiographic report includes the documentation of (i) the type and size of the prosthetic valve, (ii) valve morphology and function, (iii) prosthetic pressure gradients and flow velocities, (iv) the presence of regurgitation (location, severity), (v) RV size and function, (vi) pulmonary pressure, (vii) pulmonary artery dimension (Tables 4 and 10). When needed, the type and reason for the use of other imaging approaches are to be acknowledged. Any changes in pulmonic PHV characteristics are reported.

Imaging assessment
Because the pulmonary valve is located anteriorly and superiorly, it is often difficult to fully visualize by either TTE or TOE. With TTE,
Table 18 Grading the severity of tricuspid prostatic valve regurgitation

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve structure and motion</td>
<td>Usually normal</td>
<td>Usually abnormal<sup>a</sup></td>
<td>Usually abnormal<sup>a</sup></td>
</tr>
<tr>
<td>Colour flow TR jet<sup>b</sup></td>
<td>Small</td>
<td>Intermediate</td>
<td>Very large central jet or eccentric wall impinging jet</td>
</tr>
<tr>
<td>Flow convergence<sup>c</sup></td>
<td>No or small</td>
<td>Intermediate</td>
<td>Large<sup>d</sup></td>
</tr>
<tr>
<td>CW signal of TR jet</td>
<td>Faint/Parabolic</td>
<td>Dense/Parabolic</td>
<td>Dense/Early peaking</td>
</tr>
<tr>
<td>Semi-quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic vein flow</td>
<td>Systolic dominance</td>
<td>Systolic blunting<sup>e</sup></td>
<td>Systolic flow reversal<sup>f</sup></td>
</tr>
<tr>
<td>Tricuspid inflow</td>
<td>Variable</td>
<td>Variable</td>
<td>Elevated pressure gradient</td>
</tr>
<tr>
<td>VC width (mm)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EROA (mm²)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>R Vol (mL)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Regurgitant fraction (%)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>+RA-RV-IVC dimensions<sup>g</sup></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

^aDehiscence (paravalvular regurgitation), leaflet thickening/calcification (paravalvular regurgitation); abnormal biologic valves: cusps thickening/calcification.

^bParameter applicable to central jets and is less accurate in eccentric jets.

^cAt a Nyquist limit of 50–60 cm/s.

^dBaseline Nyquist limit shift of 28 cm/s.

^eUnless other reasons of systolic blunting (atrial fibrillation, elevated RA pressure).

^fPulmonary venous systolic flow reversal is specific but not sensitive for severe MR.

^gApplies to chronic, late post-operative prosthetic tricuspid valve regurgitation.

Figure 26 Degenerative bioprostheses in pulmonary position. Highly turbulent anterograde flow related both to the presence of stenosis and significant prosthesis regurgitation (A). The anterograde flow velocity and mean pressure gradient (MPG) are increased (B). An intense continuous wave Doppler signal and a short PHT are seen, related to the presence of a concomitant intraprosthesis regurgitation (D). The transtricuspid systolic gradient is measured in C.
the pulmonic valve, main pulmonary artery, and its bifurcation. It can also be imaged from a deep transgastric view in a 120° imaging plane. Colour flow Doppler is used to detect any flow acceleration or regurgitation. 3D TOE allows for accurate evaluation of bioprosthetic pulmonary valve structure and function, and enhances the precision and monitoring of percutaneous valvuloplasty.167

Valve morphology and function

Pulmonic PHV dysfunction, stenosis and/or regurgitation, is generally associated with abnormal valve morphology (calcifications, pannus, thrombus) and/or mobility (rocking motion of the sewing ring, abnormal occluder motion).

Acquired pulmonary PHV obstruction

Doppler assessment

Using both CW and PW Doppler at the level of the pulmonary valve, velocities across the pulmonary valve are measured. Several cycles should be recorded to account for small variations in velocities during the respiratory cycle. The funnel shape of the RVOT and the potential concomitant stenosis of the pulmonary branches limit the accuracy of the continuity equation to calculate the EOA. Currently, pulmonary valve conduits are commonly used, and it is important to know the type of degeneration that these devices may show (edge stenosis), which may cause increased gradients,14,22 Current evidence on the determination of the prosthetic pulmonary obstruction is limited. Doppler findings suspicious of prosthetic pulmonary valve stenosis include: narrowing of forward colour flow map, single transvalvular peak velocity >3.2 m/s for bioprostheses (mean gradient ≥20 mmHg), or >2.5 m/s for homografts (mean gradient ≥15 mmHg), increase in peak velocity on serial studies, elevated RV systolic pressure, and new impairment of RV function (Figure 26). When stenosis of the pulmonary branches co-exists, PW Doppler may be preferred over CW Doppler to measure the transprosthetic gradient (provided that there is not aliasing).168,169

<table>
<thead>
<tr>
<th>Table 19</th>
<th>Grading pulmonary prosthetic valve obstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Possible obstruction</td>
</tr>
<tr>
<td>Qualitative</td>
<td></td>
</tr>
<tr>
<td>Valve structure and motion</td>
<td>Normal</td>
</tr>
<tr>
<td>Colour flow</td>
<td>Normal</td>
</tr>
<tr>
<td>Semi-quantitative</td>
<td></td>
</tr>
<tr>
<td>Pressure half time (ms)</td>
<td><230</td>
</tr>
<tr>
<td>Quantitative</td>
<td></td>
</tr>
<tr>
<td>Flow dependent</td>
<td></td>
</tr>
<tr>
<td>Peak velocity (m/s)<sup>b,c</sup></td>
<td><3.2 Bioprosthesis,</td>
</tr>
<tr>
<td>Mean gradient (mmHg)</td>
<td><20 Bioprosthesis,</td>
</tr>
<tr>
<td>Colour flow</td>
<td>Normal</td>
</tr>
</tbody>
</table>

^aCups thickening or immobility.
^bThe criterion is valid for near normal or normal stroke volume (50–90 mL) and flow rate (200–300 mL/s).
^cIncrease in peak velocity on serial studies is the more reliable parameter.

<table>
<thead>
<tr>
<th>Table 20</th>
<th>Grading the severity of pulmonary prosthetic valve regurgitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Moderate</td>
</tr>
<tr>
<td>Qualitative</td>
<td></td>
</tr>
<tr>
<td>Valve structure and motion</td>
<td>Usually normal</td>
</tr>
<tr>
<td>Colour flow PR jet width<sup>b,c</sup></td>
<td>Small</td>
</tr>
<tr>
<td>CW signal of PR jet</td>
<td>Incomplete or faint</td>
</tr>
<tr>
<td>CW jet deceleration rate</td>
<td>Slow</td>
</tr>
<tr>
<td>Diastolic flow reversal in the pulmonary artery</td>
<td>None</td>
</tr>
<tr>
<td>Pulmonary vs. Systemic flow by PW Doppler</td>
<td>Slightly increased</td>
</tr>
<tr>
<td>Semi-quantitative</td>
<td></td>
</tr>
<tr>
<td>Pressure half time (ms)<sup>e</sup></td>
<td>ND</td>
</tr>
<tr>
<td>Quantitative</td>
<td></td>
</tr>
<tr>
<td>+RV size<sup>f</sup></td>
<td>ND</td>
</tr>
</tbody>
</table>

^aAbnormal mechanical valves: immobile occluder, dehiscence, or rocking (paravalvular regurgitation); abnormal biologic valves: leaflet thickening/calcification or prolapse, dehiscence, or rocking (paravalvular regurgitation).
^bParameter applicable to central jets and is less accurate in eccentric jets.
^cAt a Nyquist limit of 50–60 cm/s; parameter applies to central jets and not eccentric jets.
^dSteep deceleration is not specific for severe PR.
^ePressure half time is shortened with increasing RV diastolic pressure.
^fApplies to chronic, unless other cause of RV dilatation exists, including residual postsurgical dilatation.
Pathological pulmonary regurgitation

Colour Doppler evaluation

There is a paucity of data regarding the imaging assessment of prosthetic pulmonary regurgitation (PR). Detection of prosthetic PR relies almost exclusively on colour flow imaging. PR is diagnosed by documenting a diastolic jet in the RVOT directed towards the RV. Significant prosthetic PR is distinguished from mild PR by a longer duration of flow (holodiastolic) and a wider jet as the regurgitant jet crosses the pulmonary valve. However, in severe PR, where equalization of diastolic pulmonary artery and RV pressures occurs earlier in diastole, the colour jet area can be brief and inaccurate (dependency on the driving pressure). The assessment of prosthetic PR severity is usually estimated by the diameter of the jet at its origin. The maximum colour jet diameter (width) is measured in diastole immediately below the pulmonary valve (at the junction of the RVOT and pulmonary annulus) in the parasternal short-axis view or from the sub-costal view. Although this measurement suffers from a high inter-observer variability, a jet width that occupies >50–65% of the RV outflow tract width measured in the same frame suggests severe PR.

Detection of reversal colour Doppler flow in pulmonary arteries is a specific sign of at least moderate to severe PR. Although the vena contracta width is probably a more accurate method than the jet width to evaluate PR severity by colour Doppler, it lacks validation studies. In some patients, the flow convergence zone can be assessed. However, no studies have examined the clinical accuracy of this method in quantifying the severity of PR. A short PHT (<100 ms) (sine wave shape of the CW Doppler signal due to rapid deceleration rate with termination of flow in mid to late diastole) and a dense CW PR jet are not specific but compatible with severe prosthetic PR. The PHT is dependant not only on PR severity but also on diastolic intrapulmonary pressures and on diastolic properties of the RV, with shorter PHT when RV physiology is restrictive.

Theoretically, PW Doppler assessment of the forward and reverse flows at the pulmonary annulus and in the pulmonary artery can be used to calculate R Vol and regurgitant fraction. The pulmonary annulus should be measured carefully during early ejection (2–3 frames after the R wave on the ECG), just below the valve. This technique is subject to errors in measurement and is not validated for this purpose. A regurgitant fraction <30% is suggestive of mild PR, whereas a regurgitant fraction >50% can be consistent with severe PR.

Evidence of RV dilatation with flattening of the interventricular septum in diastole and resultant paradoxical motion is suggestive but not specific for severe PR. Nevertheless, its absence suggests milder degree of PR or acute PR. Of note, dilatation can be observed in other conditions (non-specific) or may be absent in acute severe PR.

Integrative assessment

Echocardiographic assessment of pulmonary PHV obstruction includes integration of data from 2D/3D imaging of the pulmonic valve as well as Doppler measures of stenosis severity. Other imaging modalities, when indicated, can be used to alternatively assess valve structure, motion, and function. Table 19 lists the imaging parameters used to assess pulmonary PHV function.

References

Conflict of interest: None declared.

112. Garcia D, Dumesnil JG, Turina LG, Kadem L, Pibarot P. Discrepancies between catheter and Doppler estimates of valve effective orifice area can be predicted from the pressure recovery phenomenon: practical implications with regard to quantification of aortic stenosis severity. J Am Coll Cardiol 2003;41:435–42.

